Return to search

Analysis of 11 june 2003 mesoscale convective vortex genesis using weather surveillance radar ??88 doppler (wsr-88d)

Mesoscale convective vortices (MCVs), which typically form within the stratiform rain of some mesoscale convective systems (MCSs), may persist for days, often regenerating convection daily. Long-lived MCVs can produce as much precipitation as a landfalling hurricane and lead to catastrophic flooding. The number of studies using multi-Doppler radar observations for validation of the kinematics, or three-dimensional (3-D) wind structure, of MCV genesis is limited. For this study, the Oklahoma City (KTLX) and Tulsa, Oklahoma (KINX) Weather Surveillance Radar – 1988 Doppler (WSR-88D) were used to examine the genesis of a long-lived MCV from 0000 to 0300 UTC on 11 June 2003. Traditional dual-Doppler techniques were used to determine the 3-D wind field. To relate MCV genesis within the associated larger MCS, time series of convective and stratiform precipitation, divergence, vertical vorticity, and vertical velocity were created for multiple levels within the MCS. The role of vertical vorticity generated in the convective region in MCV development was determined using vertical profiles of the terms in the vorticity tendency equation at 15 minute temporal resolution during the three hour period of investigation. The results of this study provide a detailed three hour examination for the initiation and early evolution of a long-lived MCV and can provide model validation of MCV generation.

Identiferoai:union.ndltd.org:TEXASAandM/oai:repository.tamu.edu:1969.1/ETD-TAMU-2423
Date15 May 2009
CreatorsReynolds, Amber Elizabeth
ContributorsCarey, Lawrence D, Zhang, Fuqing, Davis, Chris, Yvon-Lewis, Shari
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
Typethesis, text
Formatelectronic, application/pdf, born digital

Page generated in 0.0016 seconds