Drilling is a standard process for producing holes in metal materials. With an increased hole depth the demands increase on both machine and tool. Deep hole drilling is a complex process which ischaracterized by a high metal removal rate and hole accuracy. A hole deeper than ten times the diameter can be considered a deep hole which requires a specialized drilling technique. During adeep hole drilling process, the forces generated on the deep hole drill give a rise to a resultant radial force. The resultant radial force pushes the drill in a radial direction during a drilling operation. The radial force direction is of crucial importance in regard of tool guidance, stability and hole size accuracy. This force affects tool performance, reduces tool life and has an impact on the bore surface. Due to the complex nature of deep hole drilling, Sandvik Coromant wishes to get a better understanding of how their current deep hole drilling tools are balanced. The purpose of this study is to conduct a survey of a number of drills of Sandvik Coromant deep hole drill assortment. The main aim of this study is to calculate and measure the resultant radial force generated during a deep hole drilling operation. The forces are calculated with the aid of a calculation program and test-runs on a number of drills. This report presents the calculated magnitude and direction of the resultant radial force duringentrance, full intersection and at the exit of the workpiece. In addition to the measured values of theresultant radial force during entry and full intersection. Four different drill geometries are evaluated which of two are competitor drills. A deep hole drill geometry is re-modified in aspect to drill stability based on the outcome of the measured and calculated results. The results acquired from the performed calculation and measurements of the resultant showed that the resultant radial force acts in an angular direction that was outside the range between the support pads. This true for three of the four evaluated drill geometries. There were minor differences between the measured and calculated forces which enforce the reliability of the used calculation program. The modified drill geometry of a deep hole drill gave an indication of which geometry variables have impact on the resultant radial force magnitude and angular direction. The data presented in this report can be a base for future development of a deep hole drill toolgeometry in regard to the resultant radial force. Variables affecting the calculated results and theresultant radial force are presented and discussed. The study is concluded with suggestions of futurework based on the acquired data.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hig-20696 |
Date | January 2015 |
Creators | Malave, Carmen |
Publisher | Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds