The in-flight absolute radiometric calibration of the Thematic Mapper (TM) is being conducted using the results of field measurements at White Sands, New Mexico. These measurements are made to characterize the ground and atmosphere at the time the TM is acquiring an image of White Sands. The data are used as input to a radiative transfer code that computes the radiance at the entrance pupil of the TM. The calibration is obtained by comparing the digital counts associated with the TM image of the measured ground site with the radiative transfer code result. The calibrations discussed here are for the first four visible and near-infrared bands of the TM. In this dissertation the data reduction for the first calibration attempts on January 3, 1983, and July 8, 1984, is discussed. Included are a review of radiative transfer theory and a discussion of model atmospheric parameters as defined for the White Sands area. These model parameters are used to assess the errors associated with the calibration procedure. Each input parameter to the radiative transfer code is varied from its model value in proportion to the uncertainty with which it can be determined. The effects of these uncertainties on the predicted radiances are determined. It is thought that the optical depth components τ(Ray), τ(Mie), τ(oz), and τ(H₂O) can be measured to within 10%, 2%, 10%, and 30%, respectively. For the white gypsum sand, surface reflectance uniformity is on the order of 1.5%, and the overall uncertainty in measured reflectance is about 2%. This is due to an uncertainty in the reflectance factor of the calibration plates. The greatest uncertainty in calibration is attributed to our uncertainty in the aerosol parameters, in particular the imaginary component of refractive index. The cumulative effect of these uncertainties is thought to produce an uncertainty in computed radiance of about 5%.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/188121 |
Date | January 1985 |
Creators | KASTNER, CAROL JANE. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Dissertation-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0021 seconds