Return to search

FASN Regulates Cellular Response to Genotoxic Treatments by Increasing PARP-1 Expression and DNA Repair Activity via NF-κB and SP1

Fatty acid synthase (FASN), the sole cytosolic mammalian enzyme for de novo lipid synthesis, is crucial for cancer cell survival and associates with poor prognosis. FASN overexpression has been found to cause resistance to genotoxic insults. Here we tested the hypothesis that FASN regulates DNA repair to facilitate survival against genotoxic insults and found that FASN suppresses NF-κB but increases specificity protein 1 (SP1) expression. NF-κB and SP1 bind to a composite element in the poly(ADP-ribose) polymerase 1 (PARP-1) promoter in a mutually exclusive manner and regulate PARP-1 expression. Up-regulation of PARP-1 by FASN in turn increases Ku protein recruitment and DNA repair. Furthermore, lipid deprivation suppresses SP1 expression, which is able to be rescued by palmitate supplementation. However, lipid deprivation or palmitate supplementation has no effect on NF-κB expression. Thus, FASN may regulate NF-κB and SP1 expression using different mechanisms. Altogether, we conclude that FASN regulates cellular response against genotoxic insults by up-regulating PARP-1 and DNA repair via NF-κB and SP1.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-16382
Date08 November 2016
CreatorsWu, Xi, Dong, Zizheng, Wang, Chao J., Barlow, Lincoln James, Fako, Valerie, Serrano, Moises A., Zou, Yue, Liu, Jing Yuan, Zhang, Jian Ting
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
SourceETSU Faculty Works

Page generated in 0.0019 seconds