Return to search

Functional polymers via Cu-mediated radical polymerization

This work reports the investigation of Cu-mediated polymerization systems and its limits, in order to obtain functional branched polymers, in particular star-shaped and graft-shaped polymers. A novel initiator structure has allowed developing a new approach to synthesise sequence controlled multiblock star polymers via Cu-mediated reversible deactivation radical polymerization (RDRP) in water. This technique allows the preparation of pentablock star shaped polymers in just under 90 minutes of reaction time. The obtained polymers had a good agreement between theoretical and experimental molecular weights and excellent control over molecular weight distribution. Alternatively, the Cu-mediated RDRP of star polymers using a British 1 penny coin was described, displaying similar results as in the literature, providing better experimental conditions. As the copper coin was recovered unharmed, the catalyst was found to be economically very effective. Furthermore, poly(2-ethyl oxazoline) (PEtOx) was polymerized with good control and partially hydrolysed to poly(ethylene imine) (PEI) to yield PEtOx-r-PEI using a microwave reactor. The secondary amines of PEI was converted to macroinitiators, to allow the polymerization of acrylamides in aqueous medium, resulting in graft type polymers based on a poly(oxazoline) backbone with acrylamide side chains. Finally, the synthesis of carbohydrate-monomers was described, which allows to obtain monomers with a different number of carbohydrates (one, two or three). These monomers were polymerised via aqueous SET-LRP, to explore their interaction with carbohydrate binding lectins and to understand the impact on binding of carbohydrate density on polymers and polymer chain length.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:766119
Date January 2018
CreatorsAksakal, Resat
PublisherQueen Mary, University of London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://qmro.qmul.ac.uk/xmlui/handle/123456789/36215

Page generated in 0.0017 seconds