Schwerpunkt der vorliegenden Arbeit war die Erstellung, Anpassung und Anwendung einer Methode, die es über die Quantifizierung gebildeter OH-Radikale ermöglicht, sowohl den Einfluss verschiedener Materialmodifikationen (physikalisch dotierte Nanokatalysatoren bzw. Biokompositmaterialien) als auch die Auswirkungen von Matrixbestandteilen oder hydrochemischen Randbedingungen auf die photokatalytische Effizienz der Materialien zu untersuchen. Zudem wurde angestrebt, dass sich die Anwendbarkeit der Methode nicht nur auf die Photokatalyse beschränkt, sondern auch auf andere AOPs ausgeweitet werden kann. Des Weiteren wurde über die Umsetzung der Modellspurenstoffe Carbamazepin und Diclofenac die Wirksamkeit der Katalysatormaterialien untersucht.
Anhand von Versuchen im Labormaßstab werden unter Anwendung der entsprechenden Methode zur Quantifizierung der OH-Radikale bisherige zugrundeliegende Hypothesen zur photokatalytischen Erzeugung von OH-Radikalen (Einfluss von pH und Oberfläche) überprüft und modifiziert. Dabei werden neue Ansätze zur Oberflächenabhängigkeit der OH-Radikalbildung in AOPs (EAOP Diamantelektrode, UV/VUV), die Effizienz von UV/VUV im Vergleich zu UVA-Photokatalyse, die Anwendung von S-Layer-Proteinen in photokatalytischen Biokompositmaterialien sowie eine photokatalytische Umsetzung von Carbamazepin unter Nutzung neuartiger Katalysatoren und Sonnenlicht untersucht.
Mit Hilfe der gewonnenen Erkenntnisse ist es möglich, photokatalytisch aktive Materialien über die OH-Radikalbildungskapazität, als Basisprozess einer photokatalytischen Eliminierung von pharmazeutischen Wirkstoffen aus Wässern, mit Hinblick auf ihre Effizienz und Haltbarkeit zu untersuchen. Daneben bietet das erstellte Konzept zur analytischen Anwendung der OH-Radikalbestimmung neben der Gelegenheit für interessante Vergleiche diverser AOP-Systeme auch die Möglichkeit einer Charakterisierung und Optimierung der einzelnen AOPs. Zudem konnte gezeigt werden, dass die Anwendung von nano-Biokompositmaterialien unter Verwendung von S-Layer-Protein zur Herstellung multifunktionaler photokatalytischer Beschichtungen vielversprechend ist.
Die Ergebnisse der Arbeit unterstreichen, dass die analytische Erfassung von Transformationsprodukten aus photokatalytischen bzw. oxidativen Umsetzungen im Allgemeinen von großer Bedeutung ist, jedoch allein nicht ausreicht, um hinreichend sichere Aussagen über eine mögliche Gefährdung für Mensch bzw. Ökosystem zu erhalten. / The current work was focused on the preparation, adaption and application of an analytical method for the determination of OH radicals for the comparison of the activity of different photocatalytic materials in relation to the material modification (i.e. physically doped nanomaterials or biocomposite materials) and the composition of the water matrix. Furthermore, the application of the OH radical assay should be extended on other AOPs. The degradation of the model compounds carbamazepine and diclofenac was examined to determine the efficiency of the novel photocatalysts.
By using appropriate OH radical assays in laboratory scale experiments, present hypotheses in relation to the photocatalytic formation of OH radicals (i.e. influence of pH or surface) were examined and modified. New approaches on the formation of OH radicals with respect to the surface within AOPs (EAOP diamond electrodes or UV/VUV), the efficiency of UV/VUV in relation to photocatalysis using UVA irradiation, the application of S-layer proteins in biocomposite materials and the photocatalytic degradation of carbamazepine applying novel photocatalysts and natural sunlight were examined.
Based upon the findings, it was possible to compare photocatalytic materials regarding efficiency and stability by means of the capacity to form OH radicals as the base process for the oxidative degradation of pharmaceutical trace compounds. The analytical concept offers the possibility to compare different AOPs and to characterize or optimize a single AOP. Furthermore, it was shown that the implementation of nanoscale biocomposite materials using S-layer proteins for the preparation of multi-functional coatings for photocatalytic applications is promising.
In addition, the current work confirmed that the examination of transformation products of photocatalytic treatment processes or other oxidative reactions is very important. However, the analytical characterization alone is not sufficient to predict potential hazards to human health or the ecosystem with adequate reliability.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-155721 |
Date | 26 November 2014 |
Creators | Schmoock, Christine |
Contributors | Technische Universität Dresden, Fakultät Umweltwissenschaften, Prof. Dr. rer. nat. habil. Eckhard Worch, Prof. Dr. rer. nat. habil. Eckhard Worch, Prof. Dr. rer. nat. habil. Torsten Schmidt, Prof. Dr. rer. nat. Jens Hartmann |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.002 seconds