Return to search

Generalized Three Dimensional Geometrical Scattering Channel Model for Indoor and Outdoor Propagation Environments

The well known geometrical scattering channel modeling technique has been suggested to describe the spatial statistical
distribution of the received multipath signals at various types of wireless communication environments and for different wireless system
applications. This technique is based on the assumption that the scatterers, i.e. objects that give rise to the multipath signals, are
randomly distributed within a specified geometry that may include the base station and/or the mobile station. The geometrical scattering
channel models can provide convenient and simple statistical functions for some of the important physical quantities of the received
multipath fading signals, such as: angle of arrival, time of arrival, angular spread, delay spread and the spatial correlation function.

In this thesis, a new three dimensional geometrical scattering channel model has been developed for outdoor and indoor wireless
communication environments. The probability density functions of the angle of arrival of the received multipath signals are provided in
compact forms. These functions facilitate independent control of the angular spread in both the azimuth and the elevation angles via the
model's parameters. To establish the model verification, the developed model has been compared against the results from a site-specific
propagation prediction technique in indoor and outdoor wireless communication environments.


The developed three dimensional model has been extended to include the temporal statistical distribution of the received multipath signals
for uniform and non-uniform distributions of the scatterer. Several of the probability density functions of the angle of arrival and time of
arrival of the received multipath signals are provided. The probability density functions of the angle of arrival have been validated by
comparing them against the results from real channel measurements data. In addition, the developed three dimensional geometrical scattering
channel model has been extended for multiple input multiple output wireless channel modeling applications. A three dimensional spatial
correlation function has been developed in terms of some of the physical channel's parameters, such as: displacements and orientation of
the employed antenna elements. The developed correlation function has been used to simulate and investigate the performance
of wireless multiple input multiple output systems in different scenarios.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:MWU.1993/4384
Date19 January 2011
CreatorsAlsehaili, Mohammad
ContributorsBuchanan, Doug (Electrical & Computer Eng) Sebak, Abdel (Electrical & Computer Eng) Noghanian, Sima (Electrical and Computer Eng), Alfa, Attahiru (Electrical and Computer Eng) ElMekkawy, Tarek (Mechanical and Manufacturing Eng) Kishk, Ahmed A. (Electrical Engineering, University of Mississippi)
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_US
Detected LanguageEnglish

Page generated in 0.0022 seconds