Return to search

Symbol level decoding of Reed-Solomon codes with improved reliability information over fading channels

A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Electrical and Information Engineering, 2016 / Reliable and e cient data transmission have been the subject of current research,
most especially in realistic channels such as the Rayleigh fading channels. The focus
of every new technique is to improve the transmission reliability and to increase
the transmission capacity of the communication links for more information to be
transmitted. Modulation schemes such as M-ary Quadrature Amplitude Modulation
(M-QAM) and Orthogonal Frequency Division Multiplexing (OFDM) were
developed to increase the transmission capacity of communication links without
additional bandwidth expansion, and to reduce the design complexity of communication
systems.
On the contrary, due to the varying nature of communication channels, the message
transmission reliability is subjected to a couple of factors. These factors include the
channel estimation techniques and Forward Error Correction schemes (FEC) used
in improving the message reliability. Innumerable channel estimation techniques
have been proposed independently, and in combination with di erent FEC schemes
in order to improve the message reliability. The emphasis have been to improve
the channel estimation performance, bandwidth and power consumption, and the
implementation time complexity of the estimation techniques. Of particular interest, FEC schemes such as Reed-Solomon (RS) codes, Turbo
codes, Low Density Parity Check (LDPC) codes, Hamming codes, and Permutation
codes, are proposed to improve the message transmission reliability of communication
links. Turbo and LDPC codes have been used extensively to combat
the varying nature of communication channels, most especially in joint iterative
channel estimation and decoding receiver structures. In this thesis, attention is
focused on using RS codes to improve the message reliability of a communication
link because RS codes have good capability of correcting random and burst errors,
and are useful in di erent wireless applications.
This study concentrates on symbol level soft decision decoding of RS codes. In
this regards, a novel symbol level iterative soft decision decoder for RS codes
based on parity-check equations is developed. This Parity-check matrix Transformation
Algorithm (PTA) is based on the soft reliability information derived from
the channel output in order to perform syndrome checks in an iterative process.
Performance analysis verify that this developed PTA outperforms the conventional
RS hard decision decoding algorithms and the symbol level Koetter and Vardy
(KV ) RS soft decision decoding algorithm.
In addition, this thesis develops an improved Distance Metric (DM) method of
deriving reliability information over Rayleigh fading channels for combined demodulation
with symbol level RS soft decision decoding algorithms. The newly
proposed DM method incorporates the channel state information in deriving the
soft reliability information over Rayleigh fading channels. Analysis verify that this
developed metric enhances the performance of symbol level RS soft decision decoders
in comparison with the conventional method. Although, in this thesis, the
performance of the developed DM method of deriving soft reliability information
over Rayleigh fading channels is only veri ed for symbol level RS soft decision
decoders, it is applicable to any symbol level soft decision decoding FEC scheme.
Besides, the performance of the all FEC decoding schemes plummet as a result
of the Rayleigh fading channels. This engender the development of joint iterative channel estimation and decoding receiver structures in order to improve the message
reliability, most especially with Turbo and LDPC codes as the FEC schemes.
As such, this thesis develops the rst joint iterative channel estimation and Reed-
Solomon decoding receiver structure. Essentially, the joint iterative channel estimation
and RS decoding receiver is developed based on the existing symbol level
soft decision KV algorithm. Consequently, the joint iterative channel estimation
and RS decoding receiver is extended to the developed RS parity-check matrix
transformation algorithm. The PTA provides design ease and
exibility, and lesser
computational time complexity in an iterative receiver structure in comparison
with the KV algorithm.
Generally, the ndings of this thesis are relevant in improving the message transmission
reliability of a communication link with RS codes. For instance, it is
pertinent to numerous data transmission technologies such as Digital Audio Broadcasting
(DAB), Digital Video Broadcasting (DVB), Digital Subscriber Line (DSL),
WiMAX, and long distance satellite communications. Equally, the developed, less
computationally intensive, and performance e cient symbol level decoding algorithm
for RS codes can be use in consumer technologies like compact disc and
digital versatile disc. / GS2016

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:wits/oai:wiredspace.wits.ac.za:10539/21060
Date January 2016
CreatorsOgundile, Olanyika Olaolu
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatOnline resource (122 leaves), application/pdf

Page generated in 0.0036 seconds