Return to search

Smarter Radios for Energy efficiency in Wireless Sensor Networks / Des Radios plus Intelligentes pour améliorer l'efficacité énergétique dans les réseaux de capteurs

Les contraintes présentes dans les réseaux de capteurs impliquent l'introduction de techniques d'optimisation à différents niveaux de conception : du matériel au logiciel et dans la pile de communication. En effet, le déploiement des réseaux de capteurs, à faible consommation énergétique, exige une conception conjointe du matériel et du logiciel adaptée à l'application visée. Étant donné la nature évènementielle et multitâche des applications dans les réseaux de capteurs, nous pourrions penser à rajouter différentes unités de traitement qui coopèrent pour gérer les évènements et les tâches de manière optimale. Ainsi, la complexité des tâches accomplies par le processeur principal peut être réduite, ce qui contribue à atteindre l'efficacité énergétique. Dans cette thèse nous étudions un ensemble de protocoles qui facilitent l'implémentation des smart radios. L'idée principale des smart radios est l'introduction de l'intelligence dans la puce radio de manière à ce qu'elle soit capable de prendre des décisions ainsi que d'exécuter plusieurs tâches de manière autonome et sans l'intervention du processeur principal. Cette dernière sera responsable du bootstrap du réseau et, après qu'un état stable est atteint, le processeur peut rester inactif la plupart du temps, alors que la puce radio continue à fournir un ensemble de services. Le protocole proposé est appelé Wake on Idle et il fournit la maintenance de voisinage intégrée avec une méthode d'accès au canal. Ces services sont basés sur des transmissions analogiques qui sont codées dans le temps. De cette manière, dès que le réseau entre dans l'état stable (c.à.d. la topologie est formée et les noeuds sont associés et synchronisés), le traitement numérique de trames n'est pas nécessaire. Puisque Wake on Idle est basé sur des informations de bas niveau, il peut être facilement intégré dans la puce radio et fonctionner comme un coprocesseur qui fournit des services de haut niveau au processeur principal, comme la maintenance du voisinage et l'accès au canal. Grâce à une analyse théorique et une implémentation préliminaire, nous démontrons la faisabilité du protocole et nous montrons plusieurs caractéristiques intéressantes qui aident à atteindre l'efficacité énergétique et de bonnes performances. Ensuite, nous exploitons la signalisation analogique afin d'optimiser le duty-cycle des protocoles d'accès au canal existants. Nous proposons également un mécanisme appelé Sleep on Idle qui est basé sur l'échange de signaux analogiques ou busy tones. Sleep on Idle peut être intégré dans la radio et il peut décider quand le processeur doit être réveillé. Enfin, nous avons intégré le mécanisme de notification dans le standard IEEE802.15.4 et nous avons évalué ce mécanisme par des simulations et expérimentations. Les résultats montrent un gain important en termes de consommation en énergie et de réactivité du réseau. / The constraints of Wireless Sensor Networks scenarios require the introduction of optimization techniques at different design levels: from the hardware to the software and communication protocol stack. In fact, the design of energy efficient WSNs involves an appropriate hardware/software co-design oriented to the concerned application. Given the event driven and multitasking nature of WSNs applications, one could think of adding different processing units that cooperate to manage events and tasks in an optimal way. Then, the complexity of tasks performed by the main processing unit can be reduced and energy efficiency can be achieved. In this PhD thesis we study protocols that leverage the implementation of smart radios. The idea of smart radios is introducing intelligence into the radio chip; in this way, it will be able to take decisions and perform several tasks in an autonomous way and without any intervention of the main processing unit. The processing unit will be in charge of bootstrapping the network and, after a stable state is reached, it can remain inactive most of the time while the radio chip provides a given set of services. The proposed protocol is called Wake on Idle and it provides integrated neighborhood maintenance and low duty-cycle medium access control. These services are provided based on analog transmissions that are time encoded; then, as soon as the network enters the stable state (i.e. the topology is formed and nodes are associated and synchronized) digital processing of frames is not needed. Since it relies on low-level information, Wake on Idle can be easily implemented on hardware and integrated into the radio chip; then, it works as a coprocessor that provides high-level services (i.e. neighborhood maintenance and medium access) to the main processing unit. Through theoretical analysis and a preliminary implementation we demonstrate the feasibility of the protocol and we show several interesting characteristics that help achieving energy efficiency and good performance. Then, we further exploit analog signaling to optimize duty cycle of existing medium access control protocols. We propose a mechanism called Sleep on Idle and it is based on the exchange of analog busy tones. Sleep on Idle can also be integrated into the smart radio to take decisions about whether the main processing unit has to be woken up. We apply the decision mechanism to the slotted ieee802.15.4 standard and validate it through simulations and experimentations. The results show an important gain in terms of energy consumption and network reactivity.

Identiferoai:union.ndltd.org:theses.fr/2013GRENM020
Date03 October 2013
CreatorsVergara Gallego, Maria Isabel
ContributorsGrenoble, Pétrot, Frédéric, Rousseau, Franck
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0017 seconds