Dans le cadre de la préparation du Square Kilometre Array (SKA), le plus large radio interféromètre au monde, de nouveaux défis de traitement d'images sont à relever. En effet, les données fournies par SKA auront un débit énorme, nécessitant ainsi un traitement en temps réel. En outre, grâce à sa résolution et sa sensibilité sans précédent, les observations seront dotées d'une très forte dynamique sur des champs de vue très grands. De nouvelles méthodes de traitement d'images robustes, efficaces et automatisées sont alors exigées. L'objectif de la thèse consiste à développer une nouvelle méthode permettant la restauration du modèle de l'image du ciel à partir des observations. La méthode est conçue pour l'estimation des images de très forte dynamique avec une attention particulière à restaurer les émissions étendues et faibles en intensité, souvent noyées dans les lobes secondaires de la PSF et le bruit. L'approche proposée est basée sur les représentations parcimonieuses, nommée MORESANE. L'image du ciel est modélisée comme étant la superposition de sources, qui constitueront les atomes d'un dictionnaire de synthèse inconnu, ce dernier sera estimé par des a priori d'analyses. Les résultats obtenus sur des simulations réalistes montrent que MORESANE est plus performant que les outils standards et très compétitifs avec les méthodes récemment proposées dans la littérature. MORESANE est appliqué sur des simulations d'observations d'amas de galaxies avec SKA1 afin d'investiguer la détectabilité du milieu non thermique intra-amas. Nos résultats indiquent que cette émission, avec SKA, sera étudiée jusqu'à l'époque de la formation des amas de galaxies massifs. / Within the framework of the preparation for the Square Kilometre Array (SKA), that is the world largest radio telescope, new imaging challenges has to be conquered. The data acquired by SKA will have to be processed on real time because of their huge rate. In addition, thanks to its unprecedented resolution and sensitivity, SKA images will have very high dynamic range over wide fields of view. Hence, there is an urgent need for the design of new imaging techniques that are robust and efficient and fully automated. The goal of this thesis is to develop a new technique aiming to reconstruct a model image of the radio sky from the radio observations. The method have been designed to estimate images with high dynamic range with a particular attention to recover faint extended emission usually completely buried in the PSF sidelobes of the brighter sources and the noise. We propose a new approach, based on sparse representations, called MORESANE. The radio sky is assumed to be a summation of sources, considered as atoms of an unknown synthesis dictionary. These atoms are learned using analysis priors from the observed image. Results obtained on realistic simulations show that MORESANE is very promising in the restoration of radio images; it is outperforming the standard tools and very competitive with the newly proposed methods in the literature. MORESANE is also applied on simulations of observations using the SKA1 with the aim to investigate the detectability of the intracluster non thermal component. Our results indicate that these diffuse sources, characterized by very low surface brightness will be investigated up to the epoch of massive cluster formation with the SKA.
Identifer | oai:union.ndltd.org:theses.fr/2015NICE4016 |
Date | 28 April 2015 |
Creators | Dabbech, Arwa |
Contributors | Nice, Ferrari, Chiara, Slezak, Éric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds