Return to search

Optimal Control of a Commuter Train Considering Traction and Braking Delays

Transit operators are increasingly interested in improving efficiency, reliability, and performance of commuter trains while reducing their operating costs. In this context, the application of optimal control theory to the problem of train control can help towards achieving some of these objectives. However, the traction and braking systems of commuter trains often exhibit significant time delays, making the control of commuter trains highly challenging. Previous literature on optimal train control ignores delays in actuation due to the inherent difficulty present in the optimal control, and in general, the control, of input-delay systems.

In this thesis, optimal control of a commuter train is presented under two cases: (i) equal, and (ii) unequal time delays in the train traction and braking commands.

The solution approach uses the economic model predictive control framework, which involves formulating and solving numerical optimization problems to achieve minimum mixed energy-time optimal control in discretized spatial and time domains. The optimization problems are re-solved repeatedly along the track for the remainder of the trip, using the latest sensor measurements. This would essentially establish a feedback mechanism in the control to improve robustness to modelling errors. A key feature of the proposed methods is that they are model-based controllers, they explicitly incorporate model information, including time delays, in controller synthesis hence avoiding performance degradation and potential instability. To address the issue of input-delays, the well-established predictor approach is used to compensate for input-delays. The case of equal traction-braking delays is treated in discretized spatial domain, which uses an already developed convex approximation to the optimization problem. The use of the convex approximation allows for robust and rapid computation of the optimal control solution. The non-equal traction-braking delays scenario is formulated in time domain, leading to a nonconvex optimization problem. An alternative formulation for minimum-time optimal control problems is presented for delay-free systems that simplifies the solution of minimum-time optimal control problems compared to conventional minimum-time optimal control formulations. This formulation along with the predictor approach is used to help solve the train optimal control problem in the case of non-equal traction-braking delays. The non-equal traction-braking delay controller is compared with the equal traction-braking delay controller by insertion of an artificial delay to make the shorter delays equal to the longer delay. Results of numerical simulations demonstrate the validity and effectiveness of the proposed controllers. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/22185
Date January 2017
CreatorsRashid, Muzamil
ContributorsSirouspour, Shahin, Electrical and Computer Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.004 seconds