In the first chapter, a Q-switched fiber laser that is capable of generating transform-limited pulses based on single-frequency fiber laser seeded ring cavity is demonstrated. The output pulse width can be tuned from hundreds of nanoseconds to several microseconds. This Q-switched ring cavity fiber laser can operate over the whole C-band. In addition, a theoretical model is developed to numerically study the pulse characteristics, and the numerical results are in good agreements with the experimental results. In the next chapter, a Raman fiber laser is developed for generating signal at 1480 nm. Initial experimental results has demonstrated generating of Raman laser at 1175 nm, 1240 nm, 1315 nm, and 1395 nm wavelength. Finally, a free space fiber amplifier is studied both theoretically and experimentally. The experimental work has demonstrated signal coupling efficiency up to 90% in the NP highly Er/Yb co-doped phosphate fiber.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/202931 |
Date | January 2011 |
Creators | Zhou, Renjie |
Contributors | Peyghambarian, Nasser, Shi, Wei, Kieu, Khanh |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Thesis |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.007 seconds