Centralized power system planning covers time windows that range
from ten to thirty years. Consequently, it is the longest and most
uncertain part of power system economics. One of the challenges that
power system planning faces is the inability to accurately predict
random events; these random events introduce risk in the planning
process. Another challenge stems from the fact that, despite having
a centralized planning scheme, generation plans are set first and
then transmission expansion plans are carried out. This thesis
addresses these problems. A joint model for generation and
transmission expansion for the vertically integrated industry is
proposed. Randomness is considered in demand, equivalent
availability factors of the generators, and transmission capacity
factors of the transmission lines. The system expansion model is
formulated as a two-stage stochastic program with fixed recourse and
probabilistic constraints. The transmission network is included via
a DC approximation. The mean variance Markowitz theory is used as a
risk minimization technique in order to minimize the variance of the
annualized estimated generating cost. This system expansion model is
capable of considering the locations of new generation and
transmission and also of choosing the right mixture of generating
technologies.
The global tendency is to move from regulated power systems to
deregulated power systems. Power pool electricity markets, assuming
that the independent system operator is concerned with the social
cost minimization, face great uncertainties from supply and demand
bids submitted by market participants. In power pool electricity
markets, randomness in the cost and benefit functions through random
demand and supply functions has never been considered before. This
thesis considers as random all the coefficients of the quadratic
cost and benefit functions and uses the mean variance Markowitz
theory to minimize the social cost variance. The impacts that this
risk minimization technique has on nodal prices and on the
elasticities of the supply and demand curves are studied.
All the mathematical models in this thesis are exemplified by the
six-node network proposed by Garver in 1970, by the 21-node network
proposed by the IEEE Reliability Test System Task Force in 1979, and
by the IEEE 57- and 118-node systems.
Identifer | oai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/3454 |
Date | January 2007 |
Creators | Alvarez Lopez, Juan |
Source Sets | University of Waterloo Electronic Theses Repository |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.002 seconds