This dissertation explores Random Neural Networks (RNNs) in several aspects and their applications. First, Novel RNNs have been proposed for dimensionality reduction and visualization. Based on Extreme Learning Machines (ELMs) and Self-Organizing Maps (SOMs) a new method is created to identify the important variables and visualize the data. This technique reduces the curse of dimensionality and improves furthermore the interpretability of the visualization and is tested on real nursing survey datasets. ELM-SOM+ is an autoencoder created to preserves the intrinsic quality of SOM and also brings continuity to the projection using two ELMs. This new methodology shows considerable improvement over SOM on real datasets. Second, as a Supervised Learning method, ELMs has been applied to the hierarchical multiscale method to bridge the the molecular dynamics to continua. The method is tested on simulation data and proven to be efficient for passing the information from one scale to another. Lastly, the regularization of ELMs has been studied and a new regularization algorithm for ELMs is created using a modified Lanczos Algorithm. The Lanczos ELM on average divide computational time by 20 and reduce the Normalized MSE by 14% comparing with regular ELMs.
Identifer | oai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-8461 |
Date | 01 August 2019 |
Creators | Hu, Renjie |
Contributors | Lendasse, Amaury |
Publisher | University of Iowa |
Source Sets | University of Iowa |
Language | English |
Detected Language | English |
Type | dissertation |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | Copyright © 2019 Renjie Hu |
Page generated in 0.0016 seconds