This thesis is about graph-indexed random walks, Lipschitz mappings and graph homo- morphisms. It discusses connections between these notions, surveys the existing results, and shows new results. Graph homomorphism is an adjacency-preserving mapping between two graphs. Our main objects of study are graph homomorphisms to an infinite path. We are interested in two parameters: maximum range and average range. The average range of a graph is the expected size of the image of a uniformly picked random homomorphism to an infinite path. We obtain formulas for several graph classes and investigate main conjectures on this parameter. For maximum range parameter we show a general formula and an algorithm to compute it for general graphs. Besides that, we study the problem of extending a prescribed partial graph homomorphism to a full graph homomorphism. We show that this problem is polynomial in some cases. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:365004 |
Date | January 2017 |
Creators | Bok, Jan |
Contributors | Nešetřil, Jaroslav, Hubička, Jan |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0025 seconds