Return to search

Crossed product C*-algebras by finite group actions with a generalized tracial Rokhlin property

viii, 107 p. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / This dissertation consists of two related parts. In the first portion we use the tracial Rokhlin property for actions of a finite group G on stably finite simple unital C *-algebras containing enough projections. The main results of this part of the dissertation are as follows. Let A be a stably finite simple unital C *-algebra and suppose a is an action of a finite group G with the tracial Rokhlin property. Suppose A has real rank zero, stable rank one, and suppose the order on projections over A is determined by traces. Then the crossed product algebra C * ( G, A, à à ±) also has these three properties.

In the second portion of the dissertation we introduce an analogue of the tracial Rokhlin property for C *-algebras which may not have any nontrivial projections called the projection free tracial Rokhlin property . Using this we show that under certain conditions if A is an infinite dimensional simple unital C *-algebra with stable rank one and à à ± is an action of a finite group G with the projection free tracial Rokhlin property, then C * ( G, A, à à ±) also has stable rank one. / Adviser: Phillips, N. Christopher

Identiferoai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/8155
Date06 1900
CreatorsArchey, Dawn Elizabeth, 1979-
PublisherUniversity of Oregon
Source SetsUniversity of Oregon
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationUniversity of Oregon theses, Dept. of Mathematics, Ph.D., 2008;

Page generated in 0.0016 seconds