This thesis deals with univariate and multivariate rank methods in making statistical inference. It is assumed that the underlying distributions belong to the class of elliptical distributions. The class of elliptical distributions is an extension of the normal distribution and includes distributions with both lighter and heavier tails than the normal distribution. In the first part of the thesis the rank covariance matrices defined via the Oja median are considered. The Oja rank covariance matrix has two important properties: it is affine equivariant and it is proportional to the inverse of the regular covariance matrix. We employ these two properties to study the problem of estimating the rank covariance matrices when they have a certain structure. The second part, which is the main part of the thesis, is devoted to rank estimation in linear regression models with symmetric heteroscedastic errors. We are interested in asymptotic properties of rank estimates. Asymptotic uniform linearity of a linear rank statistic in the case of heteroscedastic variables is proved. The asymptotic uniform linearity property enables to study asymptotic behaviour of rank regression estimates and rank tests. Existing results are generalized and it is shown that the Jaeckel estimate is consistent and asymptotically normally distributed also for heteroscedastic symmetric errors.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-9305 |
Date | January 2008 |
Creators | Kuljus, Kristi |
Publisher | Uppsala universitet, Matematisk statistik, Uppsala : Universitetsbiblioteket |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Uppsala Dissertations in Mathematics, 1401-2049 ; 58 |
Page generated in 0.0011 seconds