Return to search

On Recovering the Best Rank-? Approximation from Few Entries

In this thesis, we investigate how well we can reconstruct the best rank-? approximation of a large matrix from a small number of its entries. We show that even if a data matrix is of full rank and cannot be approximated well by a low-rank matrix, its best low-rank approximations may still be reliably computed or estimated from a small number of its entries. This is especially relevant from a statistical viewpoint: the best low-rank approximations to a data matrix are often of more interest than itself because they capture the more stable and oftentimes more reproducible properties of an otherwise complicated data-generating model. In particular, we investigate two agnostic approaches: the first is based on spectral truncation; and the second is a projected gradient descent based optimization procedure.

We argue that, while the first approach is intuitive and reasonably effective, the latter has far superior performance in general. We show that the error depends on how close the matrix is to being of low rank. Our results can be generalized to the spectral and entrywise error and provide flexible tools for the error analysis of the follow-up computation. Moreover, we derive a high-order decomposition of the error. With an explicit expression of the main error source, we obtain an improved estimate of the linear form. Both theoretical and numerical evidence is presented to demonstrate the effectiveness of the proposed approaches.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/7x15-xv71
Date January 2022
CreatorsXu, Shun
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.002 seconds