Return to search

Production of High-Grade Mixed Rare Earth Oxides from Acid Mine Drainage via Solvent Extraction: Laboratory-Scale Process Development

Several recent studies have shown that acid mine drainage (AMD) may be a promising source of rare earth elements (REEs), which are essential feedstocks for many high tech applications and defense products. AMD is a longstanding environmental challenge and is currently the primary pollutant of water in the Appalachian coal mining region. Acid generated during the coal mining process tends to leach several transition metals from the surrounding rock strata. While iron, aluminum, and manganese have traditionally been noted as the predominant metals in AMD, recent studies have also shown that REEs are also present, albeit in trace concentrations, often less than 5 μg/L. The recovery of REEs from AMD can be both an economic and environmental advantage; however, the low REE concentrations and high contamination from other metals makes the concentration and purification of REEs quite difficult.

This research seeks to develop and optimize a process capable of producing mixed rare earth concentrates with purities exceeding 90% from an AMD feedstock. Parallel efforts by other members of the research team showed that a solid preconcentrate, nominally 0.1 to 2% REE, can be readily produced from AMD; however, that pre-concentration process cannot provide the further enrichment needed to generate high purity oxides suitable for downstream markets. In this project, solvent extraction was investigated as secondary process used to further enrich the low grade preconcentrate to a purity exceeding 90%. Initially, laboratory-scale batch solvent extraction tests were performed on synthetic REE solutions to determine the influence of various process parameters (e.g. pH, extractant dosage, diluent type, and feedstock concentration). Next, the separation of REEs from major AMD gangue elements was investigated using synthetic leachate solutions with concentrations similar to those expected from the pre-concentrate samples. This process showed that the grade targets could easily be met when combining optimal parameters from each step. From this preliminary work with synthetic solutions, an optimal SX process was developed and validated using a real leachate generated from a pre-concentrate sample. By integrating leachate preparation, solvent extraction, scrubbing, stripping, and oxalic acid precipitation, an oxide containing 90.5% rare earth oxides was generated. Details on the process development, experimental optimization, and opportunities for process improvement are described. / Master of Science / Rare earth elements (REEs) are essential for many modern industries, high-tech applications, and defense products. The U.S. consumes approximately 11% of the global REE demand; however, the US supply chain is heavily reliant on imported Chinese feedstocks. This lack of a domestic supply chain exposes the US to both price and supply volatility, which are prevalent in the international markets. This supply issue is further compounded by a lack of suitable domestic feedstocks. REEs are rarely concentrated into mineable ore deposits, and in some cases the extraction and processing of conventional REEs deposits entails considerable environmental risk. As a result of these challenges, numerous federal agencies and private companies have recently sought to identify promising alternative resources.

One potential alternative resource is acid mine drainage (AMD), which is a common environmental challenge associated with coal and hard rock mining. Prior studies have shown that acid mine drainage contains REEs; however, other metals, such as iron, aluminum, and manganese, preclude REE recovery using conventional processing techniques. As such, the goal of this research is to develop and optimize a process capable of recovering and concentrating REEs from an AMD feedstock.

The research conducted in this thesis predominantly included laboratory testing using synthetic AMD samples. The complexity of the synthetic AMD progressively increased from very simple, single element solutions to complex multi-component mixtures. Through this research, data and information from these controlled experiments was used to design a multi-step solvent extraction process capable of producing final REE products exceeding 90% purity. In the last stage of the research, the final process was validated using actual AMD recovered from an operating mine site. The validation test showed that the process was effective in meeting its initial objectives: the grade of the final rare earth oxide was determined to be 90.5%. This laboratory-scale experimental work represents the first step of process needed to develop and deploy a commercial technology capable of producing REE products from AMD feedstocks.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/96555
Date22 January 2020
CreatorsLiu, Shushu
ContributorsMining Engineering, Noble, Christopher Aaron, Sarver, Emily A., Ziemkiewicz, Paul F.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.002 seconds