Return to search

Structural Analysis of Reconstituted Collagen Type I - Heparin Cofibrils

Synthetic biomaterials are constantly being developed and play central roles in contemporary strategies in regenerative medicine and tissue engineering as artificial extracellular microenvironments. Such scaffolds provide 2D- and 3D-support for interaction with cells and thus convey spatial and temporal control over their function and multicellular processes, such as differentiation and morphogenesis. A model fibrillar system with tunable viscoelastic properties, comprised of 2 native ECM components like collagen type I and the GAG heparin, is presented here. Although the individual components comply with the adhesive, mechanical and bioinductive requirements for artificial reconstituted ECMs, their interaction and structural characterization remains an intriguing conundrum.

The aim of the work was to analyze and structurally characterize a xenogeneic in vitro cell culture scaffold reconstituted from two native ECM components, collagen type I and the highly negatively charged glycosaminoglycan heparin. Utilizing a broad spectrum of structural analysis it could be shown that pepsin-solubilized collagen type I fibrils, reconstituted in vitro in the presence of heparin, exhibit an unusually thick and straight shape, with a non-linear dependence in size distribution, width-to-length ratio, and morphology over a wide range of GAG concentrations. The experiments imply a pronounced impact of the nucleation phase on the cofibril morphology as a result of the strong electrostatic interaction of heparin with atelocollagen. Heparin is assumed to stabilize the collagen-GAG complexes and to enhance their parallel accretion during cofibrillogenesis, furthermore corroborated by the heparin quantitation data showing the GAG to be intercalated as a linker molecule with a specific binding site inside the cofibrils. In addition, the exerted morphogenic effect of the GAG, appears to be influenced by factors as degree of sulfation, charge, and concentration.

Further detailed structural analysis of the PSC-heparin gels using TEM and SFM showed a hierarchy involving 3 different structural levels and banding patterns in the system: asymmetric segment longspacing (SLS) fibrils and symmetric segments with an average periodicity (AP) of 250 - 260 nm, symmetric fibrous longspacing (FLS IV) nanofibrils with AP of 165 nm, and cofibrils exhibiting an asymmetric D-periodicity of 67 nm with a striking resemblance to the native collagen type I banding pattern. The intercalation of the high negatively charged heparin in the cofibrils was suggested as the main trigger for the hierarchical formation of the polymorphic structures. We also proposed a model explaining the unexpected presence of a symmetric and asymmetric form in the system and the principles governing the symmetric or asymmetric fate of the molecules.

The last section of the experiments showed that the presence of telopeptides and heparin both had significant effects on the structural and mechanical characteristics of in vitro reconstituted fibrillar collagen type I. The implemented structural analysis showed that the presence of telopeptides in acid soluble collagen (ASC) impeded the reconstitution of D-periodic collagen fibrils in the presence of heparin, leaving behind only a symmetric polymorphic form with a repeating unit of 165 nm (FLS IV). Further x-ray diffraction analysis of both telopeptide-free and telopeptide-intact collagen fibrils showed that the absence of the flanking non-helical termini in pepsin-solubilized collagen (PSC) resulted in a less compact packing of triple helices of atelocollagen with an increase of interhelical distance from 1.0 to 1.2 nm in dried samples. The looser packing of the triple helices was accompanied by a decrease in bending stiffness of the collagen fibrils, which demonstrated that the intercalated heparin cannot compensate for the depletion of telopeptides. Based on morphological, structural and mechanical differences between ASC and PSC-heparin fibrils reported here, we endorsed the idea that heparin acts as an intrafibrillar cross-linker which competed for binding sites at places along the atelocollagen helix that are occupied in vivo by telopeptides in the fibrillar collagen type I.

The performed studies are of particular interest for understanding and gaining control over a rather versatile and already exploited xenogeneic cell culture system. The reconstituted cofibrils with their unusual morphology and GAG intercalation – a phenomenon not reported in vivo – are expected to exhibit interesting biochemical behavior as a biomaterial for ECM scaffolds. Varying the experimental conditions, extent of telopeptide removal, and heparin concentration provides powerful means to control the kinetics, structure, dimensions, as well as mechanical properties of the system which is particularly important for predicting a certain cell behavior towards the newly developed matrix. The GAG intercalation could be interesting for studies with required long-term 'release upon demand' of the GAG, as well as native binding and stabilization of growth factors, cytokines, chemokines, thus providing a secondary tool to control cell signaling and fate, and later on tissue morphogenesis. / Synthetische Biomaterialien werden stetig weiterentwickelt und spielen als künstliche Mikroumgebungen eine zentrale Rolle in den modernen Strategien der regenerativen Medizin und des Tissue Engineerings. Solche sogenannten Scaffolds liefern eine 2D- und 3D-Struktur zur Interaktion mit Zellen und üben somit eine räumliche und zeitliche Kontrolle auf ihre Funktion und multizelluläre Prozesse aus, wie die Differenzierung und Morphogenese. Obwohl häufig die adhäsiven, mechanischen und bioinduzierenden Eigenschaften von Einzelkomponenten aus natürlichen Bestandteilen der extrazellulären Matrix (ECM) rekonstituierten Trägerstrukturen bekannt sind, bleiben die funktionalen und strukturellen Auswirkungen in Mehrkomponentensystemen eine faszinierende Fragestellung.

Das Ziel der Arbeit war die Analyse und die strukturelle Charakterisierung einer xenogenen in vitro Zellkultur-Trägerstruktur, die aus den zwei nativen ECM Komponenten Kollagen Typ I und das stark negativ geladene Glykosaminoglykan (GAG) Heparin rekonstituiert wurde. Unter Nutzung eines breiten Spektrums von Methoden zur strukturellen Analyse konnte gezeigt werden, dass im Beisein von Heparin rekonstituierte Pepsin-gelöste Kollagen Typ I Fibrillen eine ungewöhnlich dicke und gerade Form, mit nichtlinearen Abhängigkeiten der Größenverteilung, des Breite-zu-Länge Verhältnises und der Morphologie für eine Reihe von GAG Konzentrationen, aufweisen. Die Experimente deuten auf eine besondere Wirkung der Nukleierungsphase auf die Kofibrillmorphologie hin, als Folge der starken elektrostatischen Inteaktionen Heparins mit Atelokollagen. Es wird angenommen, dass Heparin die Komplexe aus Kollagen-GAG stabilisiert, die parallele Anlagerung während der Kofibrillogenese verbessert und dass überdies, belegt durch Heparin Quantitätsdaten, als Verbindungsmolekül mit einer spezifischen Anbindungsstelle innerhalb der Kofibrillen eingelagert wird. Darüber hinaus scheint der ausgeübte morphogene Effekt des GAGs Heparins von Faktoren wie Grad der Sulfatierung, Ladung und Konzentration abzuhängen.

Weitere detailierte Strukturanalysen der PSC - Heparin Gele mit TEM und SFM zeigten eine Hierarchie mit drei unterschiedlichen strukturellen Ebenen und Bandmustern im System: asymmetrisch segmentierte, weitabständige Fibrillen (SLS) und symmetrische Segmente mit einem AP von 250-260 nm, symmetrische fibrose weitabständige (FLS IV) Nanofibrillen mit einem AP von von 165 nm und Kofibrillen asymmetrischer D-Periodizität von 67 nm, die eine erstaunliche Ähnlichkeit zum natürlichen Kollagen Typ I Bandmuster haben. Die Einlagerung des sehr negativ geladenen Heparins in die Kofibrillen wurde als Hauptauslöser der hierarchischen Formation der polymorphen Strukturen betrachtet. Wir schlugen ebenso ein Model vor, welches sowohl das unerwartete Vorhandensein symmetrischer und asymmetrischer Formen im System als auch die Regeln erklärt, die das symmetrische oder asymmetrische Schicksal der Moleküle steuern.

Der letzte Abschnitt der Experimente zeigte, dass die Anwesenheit der Telopeptide und Heparins eine signifikante Wirkung auf die strukturellen und mechanischen Charakteristika der in vitro rekonstituierten Kollagen Typ I Fibrillen hatte. Die durchgeführten Strukturanalysen zeigten außerdem, dass die Anwesenheit der Telopeptide in säurelöslichem Kollagen (ASC) die Rekonstitution D-periodischer Kollagenfibrillen mit Heparin verhinderte, sodass nur symmetrisch polymorphe Formen mit einer Wiederholeinheit von 165 nm möglich waren (FLS IV). Weitere Messungen der Telopeptid-freien und Telopeptid-intakten Kollagenfibrillen mit Röntgendiffraktometrie ergaben, dass die Abwesenheit der nicht-helix-strukturierten Enden in Pepsin-gelöstem Kollagen (PSC) zu einer weniger kompakten Anordnung der Tripelhelices von Atelokollagen führte. Der interhelix Abstand erhöhte sich von 1,0 zu 1,2 nm für getrocknete Proben. Das zeigt, dass die losere Anordnung der Tripelhelices einhergeht mit der Verringerung der Biege-Elastizitäts-module der Kollagenfibrillen,. Basierend auf den hier vorgestellten morphologischen, strukturellen und mechanischen Unterschieden zwischen ASC und PSC-Heparin Fibrillen wird die Idee unterstützt, dass Heparin als intrafibrillärer Vernetzer fungiert und an Bindungsstellen der Helix bindet, welche in vivo bei Kollagen Typ I Fibrillen durch Telopeptide besetzt sind.

Die durchgeführten Studien sind von besonderem Interesse für das Verständnis und die Steuerung eines sehr vielseitigen und bereits verwendeten xenogenes Zellkultursystem für das Tissue Engineering. Von den rekonstituierten Kofibrillen mit ihrer ungewöhnlichen Morphologie und GAG Einlagerung - ein in vivo nicht bekanntes Phänomen - erwartet man, dass sie ein intressantes biochemisches Verhalten als Biomaterial für ECM Scaffolds zeigen. Variationen der experimentellen Bedingungen, des Ausmaßes der Telopeptidentfernung und der Heparinkonzentration liefern vielfältige Möglichkeiten um die Kinetik, Struktur, Dimension sowie die mechanischen Eigenschaften des Systems zu kontrollieren. Damit sollte es möglich sein, ein bestimmtes Zellverhalten gegenüber der neu entwickelten Matrix vorherzusagen. Die GAG-Einlagerung bietet interessante Optionen für eine langfristige Freisetzung des GAGs 'on demand', sowie die native Bindung und Stabilisierung von Wachstumsfaktoren, Cytokinen, Chemokinen, womit zusätzlich Zellsignalisierung und -schicksal und später Gewebemorphogenese kontrolliert werden kann.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25265
Date15 March 2010
CreatorsStamov, Dimitar
ContributorsPompe, Tilo, Müller, Daniel, Werner, Carsten, Technische Universität Dresden
PublisherLeibniz Institute of Polymer Research Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds