Return to search

Streaming Three-Dimensional Graphics with Optimized Transmission and Rendering Scalability

Distributed three-dimensional (3D) graphics applications exhibit both resemblance and uniqueness in comparison with conventional streaming media applications. The resemblance relates to the large data volume and the bandwidth-limited and error-prone transmission channel. The uniqueness is due to the polygon-based representation of 3D geometric meshes and their accompanying attributes such as textures. This specific data format introduces sophisticated rendering computation to display graphics models and therefore places an additional constraint on the streaming application.

The objective of this research is to provide scalable, error-resilient, and time-efficient solutions for high-quality 3D graphics applications in distributed and resource-constrained environments. Resource constraints range from rate-limited and error-prone channels to insufficient data-reception, computing, and display capabilities of client devices. Optimal resource treatment with transmission and rendering scalability is important under such circumstances. The proposed research consists of three milestones. In the first milestone, we develop a joint mesh and texture optimization framework for scalable transmission and rendering of textured 3D models. Then, we address network behaviors and develop a hybrid retransmission and error protection mechanism for the on-demand delivery of 3D models. Next, we advance from individual 3D models to 3D scene databases, which contain numerous objects interacting in one geometric space, and study joint application and transport approaches. By properly addressing the properties of 3D scenes represented in multi-resolution hierarchies, we develop a joint source and channel coding method and a multi-streaming framework for streaming the content-rich 3D scene databases toward optimized transmission and rendering scalability under resource constraints.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/14081
Date13 November 2006
CreatorsTian, Dihong
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format3816831 bytes, application/pdf

Page generated in 0.0091 seconds