Return to search

EXPLORATORY SEARCH USING VECTOR MODEL AND LINKED DATA

The way people acquire knowledge has largely shifted from print to web resources. Meanwhile, search has become the main medium to access information. Amongst various search behaviors, exploratory search represents a learning process that involves complex cognitive activities and knowledge acquisition. Research on exploratory search studies on how to make search systems help people seek information and develop intellectual skills. This research focuses on information retrieval and aims to build an exploratory search system that shows higher clustering performance and diversified search results. In this study, a new language model that integrates the state-of-the-art vector language model (i.e., BERT) with human knowledge is built to better understand and organize search results. The clustering performance of the new model (i.e., RDF+BERT) was similar to the original model but slight improvement was observed with conversational texts compared to the pre-trained language model and an exploratory search baseline. With the addition of the enrichment phase of expanding search results to related documents, the novel system also can display more diverse search results.

  1. 10.25394/pgs.12678854.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/12678854
Date30 July 2020
CreatorsDaeun Yim (9143660)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/EXPLORATORY_SEARCH_USING_VECTOR_MODEL_AND_LINKED_DATA/12678854

Page generated in 0.0023 seconds