這篇文章中,我們探討離散型反應擴散方程u_t(x,t)=u(x+1,t)-2u(x,t)+u(x-1,t)+f(u(x,t)),其中
反應項f(u)=u^2(1-u)。在此,
我們證明此方程式存在一種全解其動態行為宛如兩個來自x軸兩端相向而行的行波。 / This paper deals with a discrete reaction-diffusion equation
u_t(x,t)=u(x+1,t)-2u(x,t)+u(x-1,t)+f(u(x,t)),
where f(u)=u^2(1-u). Here, we prove there exist entire solutions which behave as two
traveling waves coming from both sides of x-axis.
Identifer | oai:union.ndltd.org:CHENGCHI/G0093751002 |
Creators | 王宏嘉, Wang,Hong-Jia |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0019 seconds