The production of 7-tetradecene was examined. Properties for this compound were estimated using group contribution methods and compared to experimental data. Process simulation was used as a tool to identify competitive processing strategies. For reactive distillation, three different models were compared to determine the model complexity needed to describe the process: Model A, with the assumption of physical and chemical equilibrium; Model B, with kinetics described by a second order reaction and physical equilibrium; and Model C, a non-equilibrium stage model that accounts for mass transfer. A conceptual design was obtained with Model B and was checked with Model C, which described the process more accurately but was more difficult to converge. Since, Model A was easier to converge, it was used to predict process conversions at different pressures. Predictions favor working at 1 bar, due to the lower heat duty and the minimum stages required.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-2149 |
Date | 02 August 2003 |
Creators | Serrano, Sandra Viviana Bennun |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0019 seconds