Ge, Tianfang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 87-93). / Abstract also in Chinese. / EXAMINATION COMMITTEE LIST --- p.ii / DECLARATION --- p.iii / ACKNOWLEDGEMENTS --- p.iv / ABSTRACT --- p.v / ABSTRACT IN CHINESE --- p.vii / ABBREVIATIONS --- p.ix / TABLE OF CONTENTS --- p.xiii / Chapter 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Erythropoiesis --- p.2 / Chapter 1.2 --- The TF-1 model --- p.3 / Chapter 1.3 --- The erythroid marker glycophorin A (GPA) --- p.4 / Chapter 1.4 --- Reactive oxygen species (ROS) --- p.4 / Chapter 1.5 --- Oxidative stress in human erythrocytes --- p.6 / Chapter 1.6 --- Antioxidant defense systems --- p.6 / Chapter 1.7 --- Glucose provides the majority of reducing equivalents in human erythrocytes --- p.9 / Chapter 1.8 --- Glucose transporter type 1 (Glut l) transports glucose and vitamin C into human erythrocytes --- p.10 / Chapter 1.9 --- Hypothesis and objectives --- p.11 / Chapter 1.10 --- Long-term significance --- p.12 / Figure 1.1 Stages of mammalian erythropoiesis. Adapted from (Koury et al.,2002) --- p.13 / "Figure 1.2 Conversion of major ROS. Adapted from (Ghaffari," --- p.14 / Figure 1.3 Major oxidative defense in human erythrocytes --- p.15 / "Figure 1.4 Peroxide scavenging systems. Adapted from (Day," --- p.16 / Chapter 2 --- MATERIALS AND METHODS --- p.17 / Chapter 2.1 --- Cell culture --- p.18 / Chapter 2.1.1 --- Culture media --- p.18 / Chapter 2.1.2 --- Cell maintenance --- p.19 / Chapter 2.1.3 --- Cell cryopreservation --- p.19 / Chapter 2.1.4 --- Cell differentiation --- p.20 / Chapter 2.1.5 --- Cell treatments --- p.20 / Chapter 2.1.5.1 --- Antioxidant treatments --- p.21 / Chapter 2.1.5.2 --- H2O2 challenging --- p.22 / Chapter 2.1.5.3 --- Antibiotic treatment --- p.22 / Chapter 2.2 --- Flow cytometry --- p.23 / Chapter 2.2.1 --- Flow cytometers --- p.23 / Chapter 2.2.2 --- Analysis of erythroid differentiation --- p.23 / Chapter 2.2.3 --- Analysis of cell lineage --- p.24 / Chapter 2.2.4 --- Analysis of intracellular ROS --- p.24 / Chapter 2.2.5 --- Analysis of mitochondrial transmembrane potential (Δψm) --- p.25 / Chapter 2.2.6 --- Analysis of mitochondrial mass --- p.25 / Chapter 2.2.7 --- Analysis of cell death --- p.26 / Chapter 2.2.8 --- Analysis of caspase-3 activity --- p.27 / Chapter 2.2.9 --- FACS cell sorting --- p.27 / Chapter 2.2.10 --- Two-variant flow cytometric experiments --- p.28 / Chapter 2.2.11 --- Analysis of flow cytometry data --- p.28 / Chapter 2.2.12 --- Compensation --- p.29 / Chapter 2.2.12.1 --- Compensation matrix for Annexin V-PI double-staining --- p.29 / Chapter 2.2.12.2 --- Compensation matrix for Annexin V-TMRM double-staining --- p.30 / Chapter 2.2.12.3 --- Compensation matrix for CFSE- GPA double-staining --- p.31 / Chapter 2.2.12.4 --- Compensation matrix for CFSE- TMRM double-staining --- p.31 / Chapter 2.2.12.5 --- Compensation matrix for CM- H2DCFDA-GPA double-staining --- p.32 / Chapter 2.2.12.6 --- Compensation matrix for GPA- TMRM double-staining --- p.33 / Chapter 2.3 --- Western blot --- p.35 / Chapter 2.4 --- Statistical analysis --- p.37 / Chapter 3 --- RESULTS AND DISCUSSION --- p.38 / Chapter 3.1 --- The cells with high GPA staining were younger in cell lineage --- p.39 / Chapter 3.2 --- ROS was produced during TF-1 erythropoiesis --- p.40 / Chapter 3.3 --- ROS production was not essential for TF-1 erythropoiesis --- p.41 / Chapter 3.4 --- ROS production was not the cause of cell proliferation during TF-1 erythropoiesis --- p.41 / Chapter 3.5 --- ROS production was not the cause of sub-lethal mitochondrial depolarization in TF-1 erythropoiesis --- p.42 / Chapter 3.6 --- The cells showing mitochondrial depolarization were mother cells that gave rise to differentiating cells --- p.44 / Chapter 3.7 --- ROS production was not the cause of cell death in TF-1 erythropoiesis --- p.45 / Chapter 3.8 --- ROS production confers oxidative defense during TF-1 erythropoiesis --- p.47 / Chapter 3.8.1 --- Glut l inhibition partially blocked TF-1 erythropoiesis without affecting cell viability --- p.47 / Chapter 3.8.2 --- Antioxidant defense systems were established during TF-1 erythropoiesis --- p.48 / Chapter 3.8.3 --- Antioxidant treatments blocked the establishment of antioxidant defense systems during TF-1 erythropoiesis --- p.51 / Chapter 3.9 --- Conclusion --- p.55 / Chapter 3.10 --- Future work --- p.56 / Figure 3.1 Cell lineage versus erythroid marker during erythropoiesis under vitamin E treatment --- p.59 / Figure 3.2 ROS production during erythropoiesis --- p.60 / Figure 3.3 ROS production versus erythroid marker during erythropoiesis under vitamin E treatment --- p.61 / Figure 3.4 Percentage of ROS+ cells in vitamin E-treated TF-1 erythropoiesis as compared to control --- p.63 / Figure 3.5 Percentage of GPA+ cells in vitamin E-treated TF-1 erythropoiesis as compared to control --- p.64 / Figure 3.6 Cell death versus mitochondrial transmembrane potential (Δψm) during erythropoiesis under vitamin E treatment --- p.65 / Figure 3.7 Erythroid marker versus mitochondrial transmembrane potential (Δψm) during erythropoiesis under vitamin E treatment --- p.67 / Figure 3.8 Cell lineage versus mitochondrial transmembrane potential (Δψm) during erythropoiesis under vitamin E treatment --- p.69 / Figure 3.9 Change of mitochondrial mass during erythropoiesis --- p.71 / Figure 3.10 ROS production versus erythroid marker during erythropoiesis under levofloxacin treatment --- p.72 / Figure 3.11 Percentage of GPA+ cells in levofloxacin-treated TF-1 erythropoiesis as compared to control --- p.73 / Figure 3.12 Cell death versus mitochondrial transmembrane potential (Δψm) during erythropoiesis under levofloxac in treatment --- p.74 / Figure 3.13 Expression level of antioxidant enzymes during erythropoiesis --- p.75 / Figure 3.14 Expression level of Glut l during erythropoiesis --- p.76 / Figure 3.15 Expression level of Glut l in GPA positive and GPA negative populations --- p.77 / Figure 3.16 Cell death under oxidative stress challenging during erythropoiesis --- p.78 / Figure 3.17 Expression level of antioxidant enzymes and Glutl during erythropoiesis under EUK-134 treatment --- p.79 / Figure 3.18 Expression level of antioxidant enzymes and Glutl during erythropoiesis under vitamin E treatment --- p.80 / Figure 3.19 Cell death under oxidative stress challenging during erythropoiesis under vitamin E treatment --- p.82 / Figure 3.20 Expression level of antioxidant enzymes during erythropoiesis under vitamin C treatment --- p.83 / Figure 3.21 Cell death under oxidative stress challenging during erythropoiesis under vitamin C treatment --- p.84 / Figure 3.22 Cell death under oxidative stress challenging during erythropoiesis under NAC treatment --- p.85 / Figure 3.23 Summary of oxidative stress challenging during erythropoiesis --- p.86 / REFERENCES --- p.87
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326891 |
Date | January 2009 |
Contributors | Ge, Tianfang., Chinese University of Hong Kong Graduate School. Division of Life Sciences. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xvii, 93 leaves : ill. (some col.) ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0023 seconds