Return to search

The Effects of Reactive Oxygen Species on Internodal Myelin Structure, and Role of Plasmalogen Phospholipids as Endogenous Antioxidants

Thesis advisor: Daniel A. Kirschner / Reactive oxygen species (ROS) are implicated in a range of degenerative conditions, including aging, neurodegenerative diseases, and neurological disorders such as multiple sclerosis. Myelin is a lipid-rich multilamellar assembly that facilitates rapid nerve conduction in higher animals, and may be intrinsically vulnerable to oxidative damage given the high energetic demands and low antioxidant capacity of myelinating cells. To determine whether ROS can cause structural damage to internodal myelin, whole mouse sciatic and optic nerves were incubated ex vivo with a previously-characterized copper (Cu)/hydrogen peroxide (HP)/o-phenanthroline (OP)-based hydroxyl radical-generating system followed by quantitative determination of myelin packing by x-ray diffraction. Exposure to Cu/OP/HP-mediated ROS caused irreversible myelin decompaction in both sciatic and optic nerves. The addition of the hydroxyl radical scavenger, sodium formate, to the ROS-producing incubation solution significantly prevented sciatic nerve myelin decompaction, implicating hydroxyl radical species in causing the damage. Furthermore, Cu/OP/HP-mediated decompaction could be prevented by the addition of EDTA, which can compete with OP for Cu binding and sequester the metal within the bulk solution. These findings suggest that Cu/OP/HP-dependent myelin decompaction is caused by OP-mediated membrane-targeted hydroxyl radical production. Myelin membranes are particularly enriched in plasmalogen phospholipids, which have been linked to antioxidant activity; this enrichment may constitute an endogenous ROS-defense mechanism that protects ROS-vulnerable myelin tissue from damage. Intriguingly, it was found that sciatic nerve myelin from plasmalogen deficient (Pex7 KO) mice was significantly more susceptible to ROS-mediated decompaction than that from WT mice, supporting the role of plasmalogens as endogenous antioxidants. / Thesis (MS) — Boston College, 2009. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_101211
Date January 2009
CreatorsLuoma, Adrienne M.
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.0177 seconds