Return to search

An analysis of students' knowledge of graphs in mathematics and kinematics / Itumeleng Barnard Phage

Physics education research found that graphs in kinematics have been a problem to students, even at university level. The study hence investigates what deficiencies first-year Physics students at the Central University of Technology, Bloemfontein, South Africa have in terms of transferring mathematics knowledge and understanding when solving kinematics problems. According to the National Department of Education (DoE, 2003), mathematics enables learners to have creative and logical reasoning about problems in the physical and social worlds. Graphs in kinematics are one of the domains that need that skill in mathematics. DoE (2011) further emphasises that learners should be able to collect, analyze, organize and critically evaluate information at the end of their FET sector and that include graphing in kinematics.
The study started by exploring graph sense and comprehension from literature. The study further explored from a literature review studentsā€˜ problems and possible solutions in transferring their mathematics understanding and knowledge to solve physics problems.
The literature study served as conceptual framework for the empirical study, i.e. the design and interpretation of questionnaires, and interview questions. The mathematics and kinematics questions of the questionnaire were divided into four constructs, namely area, gradient, reading coordinates and form/expression of graphs. The participants undertook the questionnaire and interviews voluntarily according to the research ethics. Hundred and fifty two (152) out of 234 students registered for first-year physics from the faculties of humanities (natural science), health and environmental science and engineering and information technology undertook the questionnaire. The researcher interviewed 14 students of these participants as a follow up to the responses of the questionnaire.
The responses of the participants were analysed statistically to conclude this study. The average percentages of the questionnaire showed that the majority (62.7% participants) have the mathematics knowledge compared to the low percentage of 34.7 % on physics
knowledge. With regard to the constructs the participants generally performed similarly on gradient, reading coordinates and form/expression, i.e. they could either answer both the corresponding mathematics and physics questions and neither of them. In the area construct, most participants with the mathematics knowledge did not transfer it to the physics context. The study further revealed that the majority of interviewees do not have an understanding of the basic physics concepts such as average velocity and acceleration. The researcher therefore recommends that physical science teachers in the FET schools should also undergo constant training in data handling and graphs by subject specialists and academic professionals from Higher Education Institutions. Other remedial actions are also proposed in the dissertation. / MSc (Natural Science Education), North-West University, Potchefstroom Campus, 2015

Identiferoai:union.ndltd.org:NWUBOLOKA1/oai:dspace.nwu.ac.za:10394/15501
Date January 2015
CreatorsPhage, Itumeleng Barnard
Source SetsNorth-West University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds