Non-isothermal compositional two-phase flow is considered to be one of the fundamental physical processes in the field of water resources research. The strong non-linearity and discontinuity emerging from phase transition phenomena pose a serious challenge for numerical modeling. Recently, Lauser et al.[1] has proposed a numerical scheme, namely the Nonlinear Complementary Problem (NCP), to handle this strong non-linearity. In this work, the NCP is implemented at both local and global levels of a Finite element algorithm.
In the former case, the NCP is integrated into the local thermodynamic equilibrium calculation. While in the latter one, it is formulated as one of the governing equations. The two different formulations have been investigated through several well established benchmarks and analyzed for their efficiency and robustness. In the second part of the thesis, the presented numerical formulations are applied for application and process studies in the context of nuclear waste disposal in Switzerland. Application studies comprehend the coupling between multiphase transport model and complex bio-geo-chemical process to investigate the degradation of concrete material due to two major reactions: carbonation and Aggregate Silica Reaction(ASR). The chemical processes are simplified into a lookup table and cast into the transport model via source and sink term. The efficiency and robustness of the look-up table are further compared with a fully reactive transport model.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:31114 |
Date | 03 December 2018 |
Creators | Huang, Yonghui |
Contributors | Kolditz, Olaf, Shao, Haibing, Walther, Marc, Kosakowski, Georg, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds