Return to search

Determination of fluid viscosities from biconical annular geometries: Experimental and modeling studies

Knowledge of viscosity of flow streams is essential for the design and operation of
production facilities, drilling operations and reservoir engineering calculations. The
determination of the viscosity of a reservoir fluid at downhole conditions still remains a
complex task due to the difficulty of designing a tool capable of measuring accurate
rheological information under harsh operational conditions. This dissertation presents
the evaluation of the performance of a novel device designed to measure the viscosity of
a fluid at downhole conditions.
The design investigated in this study addresses several limitations encountered in
previous designs. The prototype was calibrated and tested with fluids with viscosities
ranging from 1 to 28 cp under temperatures ranging from 100 to 160oF. Viscosity
measurements were validated with independent measurements using a Brookfield
viscometer. We proposed a mathematical model to describe the performance of the
device for Power-law fluids. This model describes the response of the device as a function of the rheology of the fluid and the physical dimensions of the device.
Experimental data suggests the validity of the model to predict the response of the
device under expected operating conditions. This model can be used to calculate optimal
dimensions of the device for customized target applications.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2805
Date15 May 2009
CreatorsRondon, Nolys Javier
ContributorsBarrufet, Maria
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Dissertation, text
Formatelectronic, application/pdf, born digital

Page generated in 0.002 seconds