The objective of the research in this thesis is to develop manufacturable high-efficiency silicon solar cells at low-cost through advanced cell design and technological innovations using industrially feasible processes and equipment on commercial grade Czochralski (Cz) large-area (239 cm2) silicon wafers. This is accomplished by reducing both the electrical and optical losses in solar cells through fundamental understanding, applied research and demonstrating the success by fabricating large-area commercial ready cells with much higher efficiency than the traditional Si cells. By developing and integrating multiple efficiency enhancement features, namely low-cost high sheet resistance homogeneous emitter, optimized surface passivation, optimized rear reflector, back line contacts, and improved screen-printing with narrow grid lines, 20.8% efficient screen-printed PERC (passivated emitter and rear cell) solar cells were achieved on commercial grade 239 cm2 p-type Cz silicon wafers.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/52234 |
Date | 27 August 2014 |
Creators | Lai, Jiun-Hong |
Contributors | Rohatgi, Ajeet |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0015 seconds