Le but de ce travail est d'analyser des scènes sous-marines naturelles et en particulier cartographier des environnements sous-marins en 3D. Il existe aujourd'hui de nombreuses techniques pour résoudre ce problème. L'originalité de ce travail se trouve dans la fusion de deux cartes obtenues avec des capteurs de différentes résolutions. Dans un premier temps, un engin autonome (ou un bateau) analyse les fonds marins avec un sonar multifaisceaux et crée une première carte globale de la zone. Cette carte est ensuite décomposée en petites cellules représentant une mosaïque du fond marin. Une deuxième analyse est ensuite réalisée sur certaines cellules particulières à l'aide d'un second capteur avec une résolution plus élevée. Cela permettra d'obtenir une carte détaillée 3D de la cellule. Un véhicule autonome sous-marin ou un plongeur muni d'un système de vision stéréoscopique effectuera cette acquisition.Ce projet se décompose en deux parties, la première s'intéressera à la reconstruction 3D de scènes sous-marines en milieu contraint à l'aide d'une paire stéréoscopique. La deuxième partie de l'étude portera sur l'aspect multimodal. Dans notre cas, nous utilisons cette méthode pour obtenir des reconstructions précises d'objets d'intérêts archéologiques (statues, amphores, etc.) détectés sur la carte globale.La première partie du travail concerne la reconstruction 3D de la scène sous-marine. Même si aujourd'hui le monde de la vision a permis de mieux appréhender ce type d'image, l'étude de scène sous-marine naturelle pose encore de nombreux problèmes. Nous avons pris en compte les bruits sous-marins lors de la création du modèle 3D vidéo ainsi que lors de la calibration des appareils photos. Une étude de robustesse à ces bruits a été réalisée sur deux méthodes de détections et d'appariements de points d'intérêt. Cela a permis d'obtenir des points caractéristiques précis et robustes pour le modèle 3D. La géométrie épipolaire nous a permis de projeter ces points en 3D. La texture a été ajoutée sur les surfaces obtenues par triangulation de Delaunay.La deuxième partie consiste à fusionner le modèle 3D obtenu précédemment et la carte acoustique. Dans un premier temps, afin d'aligner les deux modèles 3D (le modèle vidéo et le modèle acoustique), nous appliquons un recalage approximatif en sélectionnant manuellement quelques paires de points équivalents sur les deux nuages de points. Pour augmenter la précision de ce dernier, nous utilisons un algorithme ICP (Iterative Closest Points).Dans ce travail nous avons créé une carte 3D sous-marine multimodale réalisée à l'aide de modèles 3D « vidéo » et d'une carte acoustique globale. / This work aims to analyze natural underwater scenes and it focuses on mapping underwater environment in 3D. Today, many methods exist to solve this problem. The originality of this work lies in the fusion of two maps obtained from sensors of different resolutions. Initially, an autonomous vehicle (or boat) analyzes the seabed with multibeam sonar and creates a first global map of the area. This map is then divided into small cells representing a mosaic of the seabed. A second analysis is then performed on some particular cells using a second sensor with a higher resolution. This will provide a detailed map of the 3D cell. An autonomous underwater vehicle (AUV) or a diver with a stereoscopic vision system will make this acquisition. This project is divided into two parts; the first one focuses on the 3D reconstruction of underwater scenes in constrained environment using a stereoscopic pair. The second part investigates the multimodal aspect. In our study, we want to use this method to obtain accurate reconstructions of archaeological objects (statues, amphorae, etc.) detected on the global map. The first part of the work relates the 3D reconstruction of the underwater scene. Even if today the vision community has led to a better understanding of this type of images, the study of natural underwater scenes still poses many problems. We have taken into account the underwater noise during the creation of the 3D video model and during the calibration of cameras. A study of the noise robustness was performed on two methods of detection and matching of features points. This resulted into obtaining accurate and robust feature points for the 3D model. Epipolar geometry allowed us to project these points in 3D. The texture was added to the surfaces obtained by Delaunay triangulation.The second part consists of fusing the 3D model obtained previously with the acoustic map. To align the two 3D models (video and acoustic model), we use a first approximated registration by selecting manually few points on each cloud. To increase the accuracy of this registration, we use an algorithm ICP (Iterative Closest Point).In this work we created a 3D underwater multimodal map performed using 3D video model and an acoustic global map.
Identifer | oai:union.ndltd.org:theses.fr/2013MON20005 |
Date | 31 January 2013 |
Creators | Méline, Arnaud |
Contributors | Montpellier 2, Jouvencel, Bruno, Triboulet, Jean |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds