Return to search

Low power receivers for wireless sensor networks

Wireless sensor networks are becoming important in several monitoring and sensing applications. Ultra low power consumption in the sensor nodes is important for extending the battery life of the nodes. In this dissertation, two low power BFSK receiver architectures are proposed and verified with prototype implementations in silicion.
A 2.4 GHz 1 Mb/s polyphase filter (PPF) BFSK receiver demonstrates ±180 ppm frequency offset tolerance (FOT) and 40 dB adjacent channel rejection (ACR) at a modulation index (MI) of 2, with a power consumption of 1.9 mW. High FOT at low MI is achieved by a frequency-to-energy conversion architecture using PPFs without any frequency correction. The proposed hybrid topology of the PPF provides an improved ACR at reduced power.
To further improve the energy efficiency, a low energy 900 MHz mixer-less BFSK receiver is designed. High gain frequency-to-amplitude conversion and better sensitivity is achieved by a linear amplifier with Q-enhanced LC tank, eliminating the need for local oscillators and mixers. With a power consumption of 500 μW, the receiver achieves sensitivities of -90 dBm and -76 dBm for data rates of 0.5 Mb/s and 6 Mb/s, respectively. The energy efficiency is 80 pJ/b when operating at 6 Mb/s. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from March 25, 2013 - March 25, 2014

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/37785
Date25 March 2014
CreatorsNi, Ronghua
ContributorsFiez, Terri S., Mayaram, Kartikeya
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0018 seconds