Return to search

b-adrenoceptor-mediated vasorelaxation in rat isolated mesenteric arteries. / Beta-adrenoceptor-mediated vasorelaxation in rat isolated mesenteric arteries

Kai Hong Kwok. / Thesis submitted in: December 1997. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 90-98). / Abstract also in Chinese. / Chapter Chapter 1 --- Introduction / Chapter 1.1. --- Classification of β-adrenoceptor in cardiovascular system --- p.1 / Chapter 1.2. --- Vasodilator effects of β-adrenoceptor-agonists and their mechanisms --- p.4 / Chapter 1.3. --- Role of endothelium in β-adrenoceptor-mediated vasodilation --- p.7 / Chapter 1.4. --- Role of K+ channels in β-adrenoceptor-mediated relaxation --- p.11 / Chapter 1.5. --- Other aspect regarding the vascular response to stimulation of B-adrenoceptor --- p.15 / Chapter 1.6. --- Clinical aspect of B-adrenoceptor agents --- p.15 / Chapter Chapter 2 --- Methods and Materials / Chapter 2.1. --- Tissue Preparation --- p.19 / Chapter 2.1.1. --- Preparation of the isolated rat mesenteric artery --- p.19 / Chapter 2.1.2. --- Removal of the functional endothelium --- p.19 / Chapter 2.1.3. --- Organ bath set-up --- p.20 / Chapter 2.1.4. --- Length-tension relationship and an optimal resting tension --- p.22 / Chapter 2.2. --- Experimental Procedure --- p.22 / Chapter 2.2.1. --- Relaxant effects of the B-adrenoceptor agonists --- p.24 / Chapter 2.2.2. --- Effects of putative K+ channel blockers --- p.24 / Chapter 2.2.3. --- Effects of inhibitors of nitric oxide activity --- p.25 / Chapter 2.2.4. --- Effect of indomethacin --- p.25 / Chapter 2.2.5. --- "Effects of K+ channel opener, nitric oxide donor and forskolin" --- p.26 / Chapter 2.3. --- Chemicals and Solutions --- p.26 / Chapter 2.3.1. --- Chemicals and drugs --- p.26 / Chapter 2.3.2. --- Preparation of drug stock solutions --- p.26 / Chapter 2.3.3. --- Solutions --- p.28 / Chapter 2.4. --- Statistical Analysis --- p.28 / Chapter Chapter 3 --- Results / Chapter 3.1. --- Relaxant Effect of Isoprenaline --- p.29 / Chapter 3.1.1. --- Relaxant effect of isoprenaline --- p.29 / Chapter 3.1.2. --- Effects of inhibitors of nitric oxide activity --- p.29 / Chapter 3.1.3. --- Effect of charybdotoxin on the vasorelaxant response to isoprenaline --- p.32 / Chapter 3.1.4. --- Effect of glibenclamide on the vasorelaxant response to isoprenaline --- p.32 / Chapter 3.1.5. --- Effect of TPA+ on isoprenaline-induced relaxation --- p.36 / Chapter 3.1.6. --- Effect of TPA+ in the presence of iberiotoxin or glibenclamide --- p.36 / Chapter 3.1.7. --- Effect of Ba2+ on the vasorelaxant effect of isoprenaline --- p.41 / Chapter 3.1.8. --- Effect of raising extracellular K+ on isoprenaline-mediated relaxation --- p.41 / Chapter 3.2. --- Relaxant Effect of Dobutamine --- p.44 / Chapter 3.2.1. --- Effects of inhibitors of endothelium-derived factors on the relaxant effect of dobutamine --- p.44 / Chapter 3.2.2. --- Antagonism of the effect of dobutamine by β1-adrenoceptor antagonist --- p.44 / Chapter 3.2.3. --- Effects of putative Kca channel blockers on the relaxant effect of dobutamine --- p.51 / Chapter 3.2.4. --- Effect of TPA+ on the relaxant effect of dobutamine --- p.55 / Chapter 3.2.5. --- Effect of raising extracellular K+ on the relaxant effect of dobutamine --- p.55 / Chapter 3.3. --- Relaxant Effect of Fenoterol --- p.57 / Chapter 3.3.1. --- Effect of inhibitors of nitric oxide activity on the relaxant effect of fenoterol --- p.57 / Chapter 3.3.2. --- Effect of charybdotoxin on the relaxant effect of fenoterol --- p.57 / Chapter 3.3.3. --- Effect of TPA+ on the relaxant effect of fenoterol --- p.64 / Chapter 3.3.4. --- Effect of glibenclamide on the relaxant effect of fenoterol --- p.64 / Chapter 3.3.5. --- Effect of raising extracellular K+ on fenoterol-mediated relaxation --- p.64 / Chapter 3.4. --- Effects of cAMP- and cGMP-elevating agents --- p.69 / Chapter 3.4.1. --- Effects of inhibitors of endothelium-derived factors on the relaxation induced by nitroprusside and forskolin --- p.69 / Chapter 3.4.2 --- Effect of charybdotoxin on relaxant effect of forskolin --- p.69 / Chapter 3.4.3 --- Effect of Ba2+ on the vasorelaxant effect of forskolin --- p.76 / Chapter 3.4.4 --- Effect of TPA+ on the relaxant effect of forskolin --- p.76 / Chapter 3.4.5 --- Effect of glibenclamide on the relaxant effects of forskolin and cromakalim --- p.76 / Chapter Chapter 4 --- Discussion / Chapter 4.1. --- Effect of Isoprenaline and Fenoterol --- p.77 / Chapter 4.2. --- Effect of Dobutamine --- p.83 / Chapter 4.3. --- Conclusion --- p.88 / References --- p.90 / Publications --- p.98

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322527
Date January 1998
ContributorsKwok, Kai Hong., Chinese University of Hong Kong Graduate School. Division of Medical Sciences.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xiii, 98 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0026 seconds