Return to search

Reconnaissance et correspondance de formes 3D pour des systèmes intelligents de vision par ordinateur / 3D shape recognition and matching for intelligent computer vision systems

Cette thèse porte sur la reconnaissance et l’appariement de formes 3D pour des systèmes intelligents de vision par ordinateur. Elle décrit deux contributions principales à ce domaine. La première contribution est une implémentation d'un nouveau descripteur de formes construit à la base de la géométrie spectrale de l'opérateur de Laplace-Beltrami ; nous proposons une signature de point globale avancée (AGPS). Ce descripteur exploite la structure intrinsèque de l'objet et organise ses informations de manière efficace. De plus, AGPS est extrêmement compact puisque seulement quelques paires propres étaient nécessaires pour obtenir une description de forme précise. La seconde contribution est une amélioration de la signature du noyau d'onde ; nous proposons une signature du noyau d'onde optimisée (OWKS). La perfectionnement est avec un algorithme heuristique d'optimisation par essaim de particules modifié pour mieux rapprocher une requête aux autres formes appartenant à la même classe dans la base de données. L'approche proposée améliore de manière significative la capacité discriminante de la signature. Pour évaluer la performance de l'approche proposée pour la récupération de forme 3D non rigide, nous comparons le descripteur global d'une requête aux descripteurs globaux du reste des formes de l'ensemble de données en utilisant une mesure de dissimilarité et trouvons la forme la plus proche. Les résultats expérimentaux sur différentes bases de données de formes 3D standards démontrent l'efficacité des approches d'appariement et de récupération proposées par rapport aux autres méthodes de l'état de l'art. / This thesis concerns recognition and matching of 3D shapes for intelligent computer vision systems. It describes two main contributions to this domain. The first contribution is an implementation of a new shape descriptor built on the basis of the spectral geometry of the Laplace-Beltrami operator; we propose an Advanced Global Point Signature (AGPS). This descriptor exploits the intrinsic structure of the object and organizes its information in an efficient way. In addition, AGPS is extremely compact since only a few eigenpairs were necessary to obtain an accurate shape description. The second contribution is an improvement of the wave kernel signature; we propose an optimized wave kernel signature (OWKS). The refinement is with a modified particle swarm optimization heuristic algorithm to better match a query to other shapes belonging to the same class in the database. The proposed approach significantly improves the discriminant capacity of the signature. To assess the performance of the proposed approach for nonrigid 3D shape retrieval, we compare the global descriptor of a query to the global descriptors of the rest of shapes in the dataset using a dissimilarity measure and find the closest shape. Experimental results on different standard 3D shape benchmarks demonstrate the effectiveness of the proposed matching and retrieval approaches in comparison with other state-of-the-art methods.

Identiferoai:union.ndltd.org:theses.fr/2018UBFCK033
Date19 October 2018
CreatorsNaffouti, Seif Eddine
ContributorsBourgogne Franche-Comté, École nationale d'Ingénieurs de Monastir (Tunisie), Mériaudeau, Fabrice, Fougerolle, Yohan, Sakly, Anis
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds