Localized operators, like Gabor wavelets and difference-of-Gaussian filters, are considered to be useful tools for image representation. This is due to their ability to form a Âsparse code that can serve as a basis set for high-fidelity reconstruction of natural images. However, for many visual tasks, the more appropriate criterion of representational efficacy is ÂrecognitionÂ, rather than ÂreconstructionÂ. It is unclear whether simple local features provide the stability necessary to subserve robust recognition of complex objects. In this paper, we search the space of two-lobed differential operators for those that constitute a good representational code under recognition/discrimination criteria. We find that a novel operator, which we call the Âdissociated dipole displays useful properties in this regard. We describe simple computational experiments to assess the merits of such dipoles relative to the more traditional local operators. The results suggest that non-local operators constitute a vocabulary that is stable across a range of image transformations.
Identifer | oai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/30528 |
Date | 01 March 2005 |
Creators | Balas, Benjamin, Sinha, Pawan |
Source Sets | M.I.T. Theses and Dissertation |
Language | en_US |
Detected Language | English |
Format | 17 p., 34808229 bytes, 3368874 bytes, application/postscript, application/pdf |
Relation | Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory |
Page generated in 0.0018 seconds