Chloride channel family has been shown to play a significant role in physiological homeostasis processes. The function mechanism of these proteins has not yet been clearly understood. Their deficiency or mutation causes serious human illnesses. Our understanding of the chloride channels' transporting mechanisms can lead to better treatment of these illnesses. As mammalian chloride channels are difficult to prepare in laboratory, the experiments are usually done on homologous chloride channels from prokaryotic organisms. The structures of prokaryotic chloride channels have been solved and moreover they are produced with high yields. Most experiments currently use protein crystallography and provide a static picture of the system. This thesis is focused on the study of structural changes of an E. coli chloride channel using hydrogen/deuterium exchange. This method enables us to monitor dynamic conformation changes dependent on pH and exchanged ions. The measurements were done for the protonated (pH 4.5) and deprotonated state (pH 7.5) and/or in the presence of various anions: Cl− , SCN− , I− , F− , TAR. (tartaric anion). The obtained results justified the theories explaining the function of chloride channel as Cl− /H+ antiporter and provided new findings. Subject words biochemistry, protein...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:340381 |
Date | January 2014 |
Creators | Hausner, Jiří |
Contributors | Man, Petr, Vrbacký, Marek |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds