Return to search

A Singular Value Decomposition Approach For Recommendation Systems

Data analysis has become a very important area for both companies and researchers as a consequence of the technological developments in recent years. Companies are trying to increase their profit by analyzing the existing data about their customers and making decisions for the future according to the results of these analyses. Parallel to the need of companies, researchers are investigating different methodologies to analyze data more accurately with high performance.
Recommender systems are one of the most popular and widespread data analysis tools. A recommender system applies knowledge discovery techniques to the existing data and makes personalized product recommendations during live customer interaction. However, the huge growth of customers and products especially on the internet, poses some challenges for recommender systems, producing high quality recommendations and performing millions of recommendations per second.
In order to improve the performance of recommender systems, researchers have proposed many different methods. Singular Value Decomposition (SVD) technique based on dimension reduction is one of these methods which produces high quality recommendations, but has to undergo very expensive matrix calculations. In this thesis, we propose and experimentally validate some contributions to SVD technique which are based on the user and the item categorization. Besides, we adopt tags to classical 2D (User-Item) SVD technique and report the results of experiments. Results are promising to make more accurate and scalable recommender systems.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612129/index.pdf
Date01 July 2010
CreatorsOsmanli, Osman Nuri
ContributorsToroslu, Ismail Hakki
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0023 seconds