La reconnaissance de formes s'intéresse à la détection automatique de motifs dans des données d'entrée, afin de pouvoir, par exemple, les classer en catégories. La matière première de ces techniques est bien souvent l'image numérique. Cette dernière, dans sa forme la plus courante, est codée sous la forme d'une matrice de pixels. Néanmoins, la question du développement de représentations plus riches se pose. Ainsi, la structuration de l'information contenue dans l'image devrait permettre la mise en évidence des différents objets représentés, et des liens les unissant. C'est pourquoi nous proposons de modéliser les images numériques sous forme de graphes, pour leur richesse et expressivité d'une part, et pour exploiter les résultats de la théorie des graphes en reconnaissance de formes d'autre part. Nous développons pour cela une méthode d'extraction de graphes plans à partir d'images, basée sur le respect de la sémantique. Nous montrons que nous pouvons, étant donné un graphe, reconstruire avec perte limitée l'image d'origine. Par la suite, nous introduisons les graphes plans à trous, graphes dont les faces peuvent être visibles ou invisibles. Leur justification trouve sa place dans la recherche de motifs notamment, pour laquelle les éléments constituant l'arrière plan d'une image ne doivent pas être retrouvés. En dirigeant notre attention sur la planarité de ces graphes, nous proposons des algorithmes polynomiaux d'isomorphisme de graphes plans et de motifs ; nous traitons également leur équivalence, qui se trouve être un isomorphisme aux faces invisibles près.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00630439 |
Date | 06 June 2011 |
Creators | Samuel, Émilie |
Publisher | Université Jean Monnet - Saint-Etienne |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0109 seconds