La capacité de reconnaître les intentions des autres est une composante essentielle non seulement de l'intelligence humaine mais aussi de l'intelligence artificielle dans plusieurs domaines d'application. Pour les algorithmes d'intelligence artificielle, reconnaître l'intention d'un agent à partir d'une observation partielle de ses actions demeure un défi de taille. Par exemple dans les jeux de stratégie en temps réel, on aimerait reconnaître les intentions de son adversaire afin de mieux contrer ses actions futures. En domotique, on voudrait une maison capable de comprendre et d'anticiper les intentions de ses habitants pour maximiser leur confort et les assister dans leurs activités quotidiennes. Dans le domaine de la sécurité informatique, un outil de détection des intrus doit pouvoir observer les actions des usagers du réseau et déceler ceux qui ont des intentions malveillantes. Ce mémoire de maîtrise propose d'aborder ce problème sous observabilité partielle par adaptation des méthodes utilisées dans l'analyse grammaticale probabiliste. L'approche probabiliste considérée utilise une grammaire hors contexte de multi-ensemble partiellement ordonnée et considère la poursuite de plusieurs buts simultanément, ordonnés ou non. Cela revient donc à faire de l'analyse grammaticale probabiliste avec plusieurs symboles de départ.
Identifer | oai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/10286 |
Date | January 2017 |
Creators | Kuate Kengne, Thierry Christian |
Contributors | Kabanza, Froduald, St-Denis, Richard |
Publisher | Université de Sherbrooke |
Source Sets | Université de Sherbrooke |
Language | French |
Detected Language | French |
Type | Mémoire |
Rights | © Thierry Christian Kuate Kengne, Attribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada, http://creativecommons.org/licenses/by-nc-nd/2.5/ca/ |
Page generated in 0.0021 seconds