Les tâches qui consistent à comprendre automatiquement le contenu d’un signal naturel, comme une image ou un son, sont en général difficiles. En effet, dans leur représentation naïve, les signaux sont des objets compliqués, appartenant à des espaces de grande dimension. Représentés différemment, ils peuvent en revanche être plus faciles à interpréter. Cette thèse s’intéresse à une représentation fréquemment utilisée dans ce genre de situations, notamment pour analyser des signaux audio : le module de la transformée en ondelettes. Pour mieux comprendre son comportement, nous considérons, d’un point de vue théorique et algorithmique, le problème inverse correspondant : la reconstruction d’un signal à partir du module de sa transformée en ondelettes. Ce problème appartient à une classe plus générale de problèmes inverses : les problèmes de reconstruction de phase. Dans un premier chapitre, nous décrivons un nouvel algorithme, PhaseCut, qui résout numériquement un problème de reconstruction de phase générique. Comme l’algorithme similaire PhaseLift, PhaseCut utilise une relaxation convexe, qui se trouve en l’occurence être de la même forme que les relaxations du problème abondamment étudié MaxCut. Nous comparons les performances de PhaseCut et PhaseLift, en termes de précision et de rapidité. Dans les deux chapitres suivants, nous étudions le cas particulier de la reconstruction de phase pour la transformée en ondelettes. Nous montrons que toute fonction sans fréquence négative est uniquement déterminée (à une phase globale près) par le module de sa transformée en ondelettes, mais que la reconstruction à partir du module n’est pas stable au bruit, pour une définition forte de la stabilité. On démontre en revanche une propriété de stabilité locale. Nous présentons également un nouvel algorithme de reconstruction de phase, non-convexe, qui est spécifique à la transformée en ondelettes, et étudions numériquement ses performances. Enfin, dans les deux derniers chapitres, nous étudions une représentation plus sophistiquée, construite à partir du module de transformée en ondelettes : la transformée de scattering. Notre but est de comprendre quelles propriétés d’un signal sont caractérisées par sa transformée de scattering. On commence par démontrer un théorème majorant l’énergie des coefficients de scattering d’un signal, à un ordre donné, en fonction de l’énergie du signal initial, convolé par un filtre passe-haut qui dépend de l’ordre. On étudie ensuite une généralisation de la transformée de scattering, qui s’applique à des processus stationnaires. On montre qu’en dimension finie, cette transformée généralisée préserve la norme. En dimension un, on montre également que les coefficients de scattering généralisés d’un processus caractérisent la queue de distribution du processus. / Automatically understanding the content of a natural signal, like a sound or an image, is in general a difficult task. In their naive representation, signals are indeed complicated objects, belonging to high-dimensional spaces. With a different representation, they can however be easier to interpret. This thesis considers a representation commonly used in these cases, in particular for theanalysis of audio signals: the modulus of the wavelet transform. To better understand the behaviour of this operator, we study, from a theoretical as well as algorithmic point of view, the corresponding inverse problem: the reconstruction of a signal from the modulus of its wavelet transform. This problem belongs to a wider class of inverse problems: phase retrieval problems. In a first chapter, we describe a new algorithm, PhaseCut, which numerically solves a generic phase retrieval problem. Like the similar algorithm PhaseLift, PhaseCut relies on a convex relaxation of the phase retrieval problem, which happens to be of the same form as relaxations of the widely studied problem MaxCut. We compare the performances of PhaseCut and PhaseLift, in terms of precision and complexity. In the next two chapters, we study the specific case of phase retrieval for the wavelet transform. We show that any function with no negative frequencies is uniquely determined (up to a global phase) by the modulus of its wavelet transform, but that the reconstruction from the modulus is not stable to noise, for a strong notion of stability. However, we prove a local stability property. We also present a new non-convex phase retrieval algorithm, which is specific to the case of the wavelet transform, and we numerically study its performances. Finally, in the last two chapters, we study a more sophisticated representation, built from the modulus of the wavelet transform: the scattering transform. Our goal is to understand which properties of a signal are characterized by its scattering transform. We first prove that the energy of scattering coefficients of a signal, at a given order, is upper bounded by the energy of the signal itself, convolved with a high-pass filter that depends on the order. We then study a generalization of the scattering transform, for stationary processes. We show that, in finite dimension, this generalized transform preserves the norm. In dimension one, we also show that the generalized scattering coefficients of a process characterize the tail of its distribution.
Identifer | oai:union.ndltd.org:theses.fr/2015ENSU0036 |
Date | 10 November 2015 |
Creators | Waldspurger, Irène |
Contributors | Paris, Ecole normale supérieure, Mallat, Stéphane |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds