Return to search

A Parametric Study Investigating The Inertial Soil-structure Interaction Effects On Global And Local Deformation Demands Of Multistory Steel Mrf Structures Resting On Surface Rigid Mat Foundations

In reality, dynamic response of a structure supported on a compliant soil may vary significantly from the response of same structure when supported on a rigid base. A parametric study is conducted for the analysis of the variation in the global and the local deformation demands caused by the inertial soil-structure interaction effects. For the purposes of the study, nonlinear dynamic analyses are performed on 7 steel moment-resisting frame models, which are prepared by the virtue of fixed-base and flexible-base (interacting) conditions. Foundation is modeled with the Truncated Cone Model (Wolf, 1994) with the frequency independent coefficients. Free-field earthquake acceleration records are selected to conform to NEHRP equivalent Site Classes C and D. The study is limited to the structures founded on surface rigid mat foundations subjected to vertically propagating horizontally polarized coherent shear waves. Statistical analysis based on multiple linear regression procedure is performed to represent the variation in the response. Within the scope of the study, the wave parameter and the aspect ratio are observed to be directly proportional to the variation in the response, as a general trend. Maximum beneficial contribution of the SSI is found to be 6% in both global and local deformation demands. In addition, the contribution of inertial interaction effects is found to be in a decreasing trend for the increasing levels of ductility demands. Finally, upper limits of wave parameter for H/R=0.5, 1, 2 and 3 are calculated where the variation in the demands are capped at 1.0.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12610490/index.pdf
Date01 March 2009
CreatorsUtkutug, Deniz
ContributorsGulkan, Polat
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.0061 seconds