This master thesis deals with systems for detecting rhythmic structures of music recordings. The field of Music Information Retrieval (MIR) allows us to examine the harmonic and tonal properties of music, rhythm, tempo, etc., and has uses in academic and commercial sphere. Various algorithms are used in the detection of rhythmic structures. However, today, most new methods use neural networks. This work aims to summarize the current research results of systems for detecting beats and tempo, to describe methods of calculating and evaluating the parameters of music recordings, and to implement a program that allows comparison of available detection systems. The result of the work is a script in the Python language, which uses six different systems to detect the rhythmic structure of test recordings. It then checks the outputs of the algorithms according to the given reference and compares the given systems with each other using several evaluation values. It uses two datasets as a reference—one of them is publicly available and the other was created by the author of this thesis (including annotations, i.e., reference beat times, for the sample recordings). The program allows user to see the results in graphs and play any of the sample recordings with detected beat times.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:442570 |
Date | January 2021 |
Creators | Staňková, Karolína |
Contributors | Miklánek, Štěpán, Ištvánek, Matěj |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds