Made available in DSpace on 2013-08-07T18:42:45Z (GMT). No. of bitstreams: 1
000438773-Texto+Completo-0.pdf: 3581155 bytes, checksum: 8bd17c869fd04adc206bbbcd32f4b1dd (MD5)
Previous issue date: 2012 / Social media systems such as Flickr, Youtube and Picasa have become very popular as they provide a collaborative environment to share photos and videos supporting tags, ratings and comments. This kind of interaction includes a lot of content provided by users, which may bring meaningful information to recommendation systems. The aggregation of tags is also a way to cluster items and provide tag-based search content. We investigate how to support tag recommendation by ranking the co-occurrence, popularity and relevance of commonly-used tags in similar items and by similar users. We developed a tag recommendation system to recommend of possibly relevant tags. We use Flickr’s dataset to analyze our algorithm’s behavior and present the results provide by the experiment. A new model using personalized recommendation was developed using the experiment results and the behavior of each user. / Sistemas de mídia social como Flickr, Youtube e Picasa tornaram-se muito populares devido ao seu ambiente para compartilhamento de imagens, vídeos e suporte à atribuição de tags, avaliações e comentários. Sistemas colaborativos possuem grandes quantidades de conteúdo provido pelos usuários, os quais fornecem informações relevantes para engines de recomendação. O uso de tags também permite a clusterização e busca de conteúdo baseado em palavras-chaves. Neste trabalho foi investigado um mecanismo para recomendar tags, desenvolvendo medidas de co-ocorrência, popularidade e relevância de tags comumente usadas em itens similares e por usuários similares. Foi desenvolvido um sistema para recomendar possíveis tags relevantes baseadas na similaridade contextual de outras tags providas pelos usuários. Para o desenvolvimento do experimento, foi utilizado um dataset do Flickr para gerar recomendações e analisar o comportamento do algoritmo e as atribuições efetuadas pelos usuários participantes. Os resultados obtidos demonstraram padrões de atribuição e desempenho de acordo com o conteúdo/contexto da imagem. Utilizando a frequência de atribuição baseada no histórico de cada perfil é sugerido um novo modelo personalizado para recomendação de tags.
Identifer | oai:union.ndltd.org:IBICT/urn:repox.ist.utl.pt:RI_PUC_RS:oai:meriva.pucrs.br:10923/1532 |
Date | January 2012 |
Creators | Ziesemer, Angelina de Carvalho A. |
Contributors | Oliveira, Joao Batista Souza de |
Publisher | Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da PUC_RS, instname:Pontifícia Universidade Católica do Rio Grande do Sul, instacron:PUC_RS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0112 seconds