In this study, the effects of chain extension and branching on the properties of nanocomposites produced from recycled poly(ethylene terephthalate) and organically modified clay were investigated. As the chain extension/branching agent, maleic anhydride (MA) and pyromellitic dianhydride (PMDA) were used. The nanocomposites were prepared by twin-screw extrusion, followed by injection molding. Recycled poly(ethylene terephthalate), was mixed with 2, 3 and 4 weight % of organically modified montmorillonite. During the second extrusion step, 0.5, 0.75 or 1 weight % of MA or PMDA was added to the products of the first extrusion. As the second extrusion step is reactive extrusion, the anhydrides were added at three different screw speeds of 75, 150, 350 rpm, in order to observe the change of properties with the screw speed.
XRD analysis showed that, the interlayer spacing of Cloisite 25A expanded from 19.21 & / #506 / to about 28-34 & / #506 / after processing with polymer indicating an intercalated structure. PMDA, MA and organoclay content as well as the screw speed did not have a recognizable effect on interlayer distance. In the first extrusion step, nanocomposites containing 3% organoclay content gave significant increase in Young&rsquo / s modulus and decrease in elongation to break values indicating good interfacial adhesion. After the addition of chain extenders, it was observed that both MA and PMDA gave rise to improved mechanical properties of the nanocomposite owing to the branching and chain extending effects that increase the molecular weight. However, PMDA gave better mechanical properties at lower content which makes it a more effective chain extender. DSC analysis showed that MA was more effective in increasing the glass transition temperature and melting temperature in comparison to PMDA.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12605020/index.pdf |
Date | 01 June 2004 |
Creators | Keyfoglu, Ali Emrah |
Contributors | Yilmazer, Ulku |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0018 seconds