As a result of rapid product development, the product life cycle has become shorter, and thus the amount of waste from discarded industrial products has risen dramatically. An awareness of the world???s environmental problems has stimulated researchers to explore the opportunities to reuse, recycle and remanufacture end-of-life products. Disassembly is a systematic approach to separating products into components or subassemblies in order to facilitate recovery of components or materials. However, the full disassembly of a product tends to be unproductive due to technical and cost constraints and product conditions after usage. Therefore, selective disassembly has been introduced as a more practical approach, where only a limited number of disassembly paths that lead to selected parts with recovering potential are considered. This research focuses on the development of a selective disassembly methodology by reversing an assembly sequencing approach. The methodology uses a step-by-step approach to generate a disassembly sequence diagram. This involves listing all the parts within the product, generating a liaison diagram to illustrate part relationships and then establishing precedence rules describing prerequisite actions for each liaison. This is followed by segregating disassembly paths that lead to the removal of selected parts or subassemblies. Then a winnowing process is applied to these paths to eliminate invalid disassembly states and transitions. The last step is to select the optimal disassembly path by using the time requirement as the main selection criterion. In order to shorten the time for carrying out the sequencing process, a javabased program that is capable of performing the first three steps has been created. The program requires three basic inputs in forms of precedence rules, and user-required part (s) and disassembly rules, prescribing which liaison (s) should be done subsequent to a particular liaison. The viability of the methodology and the program is proved through seven case studies conducted on a fishing reel, a single-hole punch, a kettle, an entire washing machine and three washing machine subassemblies. The application of the program allows the users to determine an optimal disassembly sequence in a very short time and with only basic product information as the input.
Identifer | oai:union.ndltd.org:ADTP/187071 |
Date | January 2006 |
Creators | Pornprasitpol, Pornwan, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW |
Publisher | Awarded by:University of New South Wales. School of Mechanical and Manufacturing Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Pornwan Pornprasitpol, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0017 seconds