Return to search

ANTI-INFLAMMATORY EFFECT OF RED SEAWEED EXTRACTS

Red seaweeds are reported to represent the largest group of algae, with more species accounted for than the combination of brown and green seaweeds. Due to the high amount of polysaccharides in red seaweeds, they are mainly utilized for commercial agar and carrageenan production in industry. However, increasing studies indicate other valuable compounds such as lipids and polyphenols could be potential utilized for multiple human needs (e.g., drug development) (1, 2). With increasing studies demonstrating the potential health benefits of seaweed components, two red seaweed species commonly consumed in Asia, hong qı´ lı´n c a`i (HQL), Eucheuma sp and zhe` gu¯ ca`i (ZGC), Caloglossa leprieurii, were investigated on to determine the anti-inflammatory effects of their extractable lipophilic bioactives (ELB) and bound lipophilic bioactives (BLB) in lipopolysaccharide( LPS)-treated RAW 264.7 macrophages. The chemical composition of ELB and BLB was characterized in terms of total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC), oxygen radical absorbance capacity (ORAC), and etc. Six phenolic compounds were identified in ZGC extracts and one was detected in HQL. All extracts inhibited the nitric oxide (NO) production in LPS-induced macrophages, which was associated with downregulation of iNOS and COX-2 protein expression and up-regulation of HQ-1 and NQO1 protein expression. Overall, our results showed that both ELB and BLB in HQL and ZGC seaweeds presented potential anti-inflammatory activities. These results warrant future investigations to determine the mode of actions of red seaweed bioactives and their efficacy in humans.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-2022
Date01 September 2020
CreatorsYang, Yingying
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses

Page generated in 0.008 seconds