Return to search

Método para estimar a capacidade de refrigeração de compressores herméticos integrável à linha de produção

Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Mecânica, Florianópolis, 2014 / Made available in DSpace on 2015-02-05T21:22:14Z (GMT). No. of bitstreams: 1
330919.pdf: 4438577 bytes, checksum: 6248b7dd51131ac7a20534d616d61b1c (MD5)
Previous issue date: 2014 / Capacidade de refrigeração é um parâmetro altamente representativo da qualidade do compressor hermético e da sua adequação a um sistema de refrigeração. Atualmente, a medição desse parâmetro é realizada através de ensaio laboratorial com duração média de 4,5 horas e incerteza de medição de aproximadamente ±3%. Devido ao tempo e custos envolvidos no ensaio, quando um lote de compressores é produzido, esse parâmetro é avaliado através de uma amostra muito pequena. Para contornar esse problema, a proposta apresentada nesta tese se afasta do conceito tradicional de medição da capacidade de refrigeração. A ideia central do método proposto é a utilização da correlação existente entre a capacidade de refrigeração e a capacidade do compressor em elevar a pressão de ar num volume fixo. Através de compressores ensaiados tanto na linha de produção (medição da taxa de elevação da pressão) quanto em laboratório (medição da capacidade de refrigeração) foi possível avaliar a viabilidade de uso de tal correlação. Um conjunto de ensaios foi utilizado para treinamento de modelos neurais artificiais, os quais foram empregados para realizar inferências sobre o valor da capacidade de refrigeração através da capacidade de elevação da pressão. Através do estudo de caso, que faz parte deste documento, os compressores de um conjunto de teste apresentaram diferenças típicas de 1% entre os resultados obtidos no laboratório e na linha de produção. No entanto, mesmo o modelo neural apresentando bons resultados de inferência, um dos entraves mais significativos para o uso de redes neurais em atividades metrológicas é a inexistência de métodos de avaliação de incerteza condizentes com os preceitos metrológicos. Para contornar esse problema, uma nova técnica foi desenvolvida. Tal técnica utiliza uma combinação da reamostragem bootstrap, frequentemente utilizada para fornecer intervalos de confiança em redes neurais, e o método de Monte Carlo, frequentemente utilizado na avaliação da incerteza de medição. Assim, é possível obter uma incerteza da inferência que considere, além dos erros provenientes do processo de treinamento, as incertezas das medições durante o treinamento e uso das redes neurais. A integração desses métodos representa uma evolução no estado da arte no que concerne estimar a dúvida na saída de um modelo neural artificial. No estudo de caso, os compressores de teste apresentaram o valor típico de ±4,5% para a incerteza da inferência do modelo neural. O tempo médio para obtenção de um resultado na linha de produção ficou próximo a 7 segundos, o que significa que essa ocorrerá em tempo inferior a um milésimo do atualmente necessário para medição da capacidade de refrigeração em uma bancada no laboratório.<br> / Abstract: The refrigerating capacity is an important parameter for the quality of hermetic compressors and to make a proper assignment of them to a certain refrigeration system. Typical tests for measuring de refrigerating capacity are run in laboratory facilities and which last 4.5 hours, at average, and present measurement uncertainty of about ±3%. As a consequence related to typical tests duration and their associated costs, the evaluation of production lots are made by testing small samples. The purpose of this thesis is to present a method to overcome the small sample issue through the measurement of the refrigerating capacity using a strategy that avoids the typical tests approach. The main idea is the use of the existing correlation between the refrigerating capacity and the capacity of the compressor to increase the air pressure in a fixed volume vessel. The appropriateness on using this correlation was evaluated through test data obtained from production line tests (air pressure increase rate measurements) and from laboratory tests (refrigerating capacity measurements). The data was used for training neural networks models that were designed to infer the refrigerating capacity using air pressure increase rate. The evaluation presented in this thesis shown that the differences between production line inferences and laboratory results were about 1%. However, even with the good results obtained using neural networks, a lack of a proper way for evaluating the uncertainties related to the use of neural networks on metrological activities should be fulfilled. To overcome this problem a new technique was developed. It uses the bootstrap resampling method - usually applied for the determination of neural networks confidence intervals - and the Monte Carlo method - usually applied for measurement uncertainty evaluation. Therefore, it is possible to achieve an inference uncertainty that considers the errors from the neural networks training process as well as the measurement uncertainties related the inputs during the training and the using of the neural networks. The integration of these methods represents an evolution on the state of art related to the estimation of the doubt of an artificial neural network model.The results presented in this thesis shown typical uncertainties for the inferences of about ±4.5%. The average duration for the tests in the production line was about 7 seconds - less than a thousandth of the time required for the refrigerating capacity measurement in laboratory.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufsc.br:123456789/129674
Date January 2014
CreatorsCoral, Rodrigo
ContributorsUniversidade Federal de Santa Catarina, Flesch, Carlos Alberto, Penz, Cesar Alberto
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Format238 p.| il., grafs., tabs.
Sourcereponame:Repositório Institucional da UFSC, instname:Universidade Federal de Santa Catarina, instacron:UFSC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds