Submitted by Isaac Francisco de Souza Dias (isaac.souzadias@ufpe.br) on 2016-01-27T17:25:47Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
tese Adenilton José da Silva.pdf: 4885126 bytes, checksum: d2bade12d15d6626962f244aebd5678d (MD5) / Made available in DSpace on 2016-01-27T17:25:47Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
tese Adenilton José da Silva.pdf: 4885126 bytes, checksum: d2bade12d15d6626962f244aebd5678d (MD5)
Previous issue date: 2015-06-26 / CNPq / Miniaturisation of computers components is taking us from classical to quantum physics domain. Further reduction in computer components size eventually will lead to the development of computer systems whose components will be on such a small scale that quantum physics intrinsic properties must be taken into account. The expression quantum computation and a first formal model of a quantum computer were first employed in the eighties. With the discovery of a quantum algorithm for factoring exponentially faster than any known classical algorithm in 1997, quantum computing began to attract industry investments for the development of a quantum computer and the design of novel quantum algorithms. For instance, the development of learning algorithms for neural networks. Some artificial neural networks models can simulate an universal Turing machine, and together with learning capabilities have numerous applications in real life problems. One limitation of artificial neural networks is the lack of an efficient algorithm to determine its optimal architecture. The main objective of this work is to verify whether we can obtain some advantage with the use of quantum computation techniques in a neural network learning and architecture selection procedure. We propose a quantum neural network, named quantum perceptron over a field (QPF). QPF is a direct generalisation of a classical perceptron which addresses some drawbacks found in previous models for quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimises the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures and neural networks parameters in linear time over the number of examples in the training set. SAL is the first quantum learning algorithm to determine neural network architectures in linear time. This speedup is obtained by the use of quantum parallelism and a non linear quantum operator. / A miniaturização dos componentes dos computadores está nos levando dos domínios da física clássica aos domínios da física quântica. Futuras reduções nos componentes dos computadores eventualmente levará ao desenvolvimento de computadores cujos componentes estarão em uma escala em que efeitos intrínsecos da física quântica deverão ser
considerados. O termo computação quântica e um primeiro modelo formal de computação quântica foram definidos na década de 80. Com a descoberta no ano de 1997 de um algoritmo quântico para fatoração exponencialmente mais rápido do que qualquer algoritmo clássico conhecido a computação quântica passou a atrair investimentos de diversas empresas para a construção de um computador quântico e para o desenvolvimento de algoritmos quânticos. Por exemplo, o desenvolvimento de algoritmos de aprendizado para redes neurais. Alguns modelos de Redes Neurais Artificiais podem ser utilizados para simular uma máquina de Turing universal. Devido a sua capacidade de aprendizado, existem aplicações de redes neurais artificiais nas mais diversas áreas do conhecimento. Uma das limitações das redes neurais artificiais é a inexistência de um algoritmo com custo polinomial para determinar a melhor arquitetura de uma rede neural. Este trabalho tem como objetivo principal verificar se é possível obter alguma vantagem no uso da computação quântica no processo de seleção de arquiteturas de uma rede neural. Um modelo de rede neural quântica denominado perceptron quântico sobre um corpo foi proposto. O perceptron quântico sobre um corpo é uma generalização direta de um perceptron clássico que resolve algumas das limitações em modelos de redes neurais quânticas previamente propostos. Um algoritmo de aprendizado denominado algoritmo de aprendizado de arquitetura baseado no princípio da superposição que otimiza pesos e arquitetura de uma rede neural simultaneamente é apresentado. O algoritmo proposto possui custo linear e determina a melhor arquitetura em um conjunto finito de arquiteturas e os parâmetros da rede neural. O algoritmo de aprendizado proposto é o primeiro algoritmo quântico para determinar a arquitetura de uma rede neural com custo linear. O custo linear é obtido pelo uso do paralelismo quântico e de um operador quântico não linear.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/15011 |
Date | 26 June 2015 |
Creators | SILVA, Adenilton José da |
Contributors | http://lattes.cnpq.br/6321179168854922, LUDERMIR, Teresa Bernarda, OLIVEIRA, Wilson Rosa de |
Publisher | UNIVERSIDADE FEDERAL DE PERNAMBUCO, Programa de Pos Graduacao em Ciencia da Computacao, UFPE, Brasil |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE |
Rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds