Made available in DSpace on 2014-06-12T17:39:51Z (GMT). No. of bitstreams: 2
arquivo6971_1.pdf: 519832 bytes, checksum: 35de3846e1bc6e866dd2ee8b7a6bc74b (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2006 / O presente trabalho apresenta um sistema de previsão de carga horária em curto prazo (sete dias à frente) formado por duas etapas. Na primeira etapa foram escolhidas duas redes neurais artificiais para prever o consumo diário total em um horizonte de sete dias à frente, uma rede para os dias úteis e outra para aos dias não-úteis, o processo de escolha das redes passou por uma análise da estrutura de entrada, da base de dados e do algoritmo de treinamento. Para gerar as melhores redes utilizou-se o método k-fold crossvalidation. A segunda etapa é responsável em fornecer o comportamento da curva de carga, ou seja, a distribuição horária do consumo diário, para isso utilizou-se o sistema ANFIS (Adaptive Network-based Fuzzy Inference System) para gerar um Sistema de Inferência Fuzzy- SIF que fornece um coeficiente que representa a fração do consumo horário em relação ao consumo diário, para inicialização dos modelos optou-se pela comparação entre dois métodos: o método de clusterização subtrativa desenvolvido por Chui S e o método por inspeção onde o SIF é gerado a partir do conhecimento do especialista. Optou-se por estes modelos devido à facilidade de implementação, a capacidade de generalização e resposta rápida. Os resultados obtidos foram comparados com a bibliografia e mostram que o modelo desenvolvido tem alta capacidade de generalização e apresenta baixos valores de MAPE (erro médio percentual), além de utilizar somente dados de carga elétrica como entrada para as redes e para o sistema ANFIS sem a necessidade de dados climáticos
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/5485 |
Date | January 2006 |
Creators | SILVA, Geane Bezerra da |
Contributors | AQUINO, Ronaldo Ribeiro Barbosa de |
Publisher | Universidade Federal de Pernambuco |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds