The Self-Organization Map (SOM) is an artificial neural network that was proposed as a tool for exploratory analysis in large dimensionality data sets, being used efficiently for data mining. One of the main topics of research in this area is related to data clustering applications. Several algorithms have been developed to perform clustering in data sets. However, the accuracy of these algorithms is data depending. This thesis is mainly dedicated to the investigation of the SOM from two different approaches: (i) data mining and (ii) complex networks. From the data mining point of view, we analyzed how the performance of the algorithm is related to the distribution of data properties. It was verified the accuracy of the algorithm based on the configuration of the parameters. Likewise, this thesis shows a comparative analysis between the SOM network and other clustering methods. The results revealed that in random configuration of parameters the SOM algorithm tends to improve its acuracy when the number of classes is small. It was also observed that when considering the default configurations of the adopted methods, the spectral approach usually outperformed the other clustering algorithms. Regarding the complex networks approach, we observed that the network structure has a fundamental influence of the algorithm accuracy. We evaluated the cases at short and middle learning time scales and three different datasets. Furthermore, we show how different topologies also affect the self-organization of the topographic map of SOM network. The self-organization of the network was studied through the partitioning of the map in groups or communities. It was used four topological measures to quantify the structure of the groups such as: modularity, number of elements per group, number of groups per map, size of the largest group in three network models. In small-world (SW) networks, the groups become denser as time increases. An opposite behavior is found in the assortative networks. Finally, we verified that if some perturbation is included in the system, like a rewiring in a SW network and the deactivation model, the system cannot be organized again. Our results enable a better understanding of SOM in terms of parameters and network structure. / Um Mapa Auto-organizativo (da sigla SOM, Self-organized map, em inglês) é uma rede neural artificial que foi proposta como uma ferramenta para análise exploratória em conjuntos de dados de grande dimensionalidade, sendo utilizada de forma eficiente na mineração de dados. Um dos principais tópicos de pesquisa nesta área está relacionado com as aplicações de agrupamento de dados. Vários algoritmos foram desenvolvidos para realizar agrupamento de dados, tendo cada um destes algoritmos uma acurácia específica para determinados tipos de dados. Esta tese tem por objetivo principal analisar a rede SOM a partir de duas abordagens diferentes: mineração de dados e redes complexas. Pela abordagem de mineração de dados, analisou-se como o desempenho do algoritmo está relacionado à distribuição ou características dos dados. Verificou-se a acurácia do algoritmo com base na configuração dos parâmetros. Da mesma forma, esta tese mostra uma análise comparativa entre a rede SOM e outros métodos de agrupamento. Os resultados revelaram que o uso de valores aleatórios nos parâmetros de configuração do algoritmo SOM tende a melhorar sua acurácia quando o número de classes é baixo. Observou-se também que, ao considerar as configurações padrão dos métodos adotados, a abordagem espectral usualmente superou os demais algoritmos de agrupamento. Pela abordagem de redes complexas, esta tese mostra que, se considerarmos outro tipo de topologia de rede, além do modelo regular geralmente utilizado, haverá um impacto na acurácia da rede. Esta tese mostra que o impacto na acurácia é geralmente observado em escalas de tempo de aprendizado curto e médio. Esse comportamento foi observado usando três conjuntos de dados diferentes. Além disso, esta tese mostra como diferentes topologias também afetam a auto-organização do mapa topográfico da rede SOM. A auto-organização da rede foi estudada por meio do particionamento do mapa em grupos ou comunidades. Foram utilizadas quatro medidas topológicas para quantificar a estrutura dos grupos em três modelos distintos de rede: modularidade, número de elementos por grupo, número de grupos por mapa, tamanho do maior grupo. Em redes de pequeno mundo, os grupos se tornam mais densos à medida que o tempo aumenta. Um comportamento oposto a isso é encontrado nas redes assortativas. Apesar da modularidade, tem um alto valor em ambos os casos.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-30102018-111955 |
Date | 25 June 2018 |
Creators | Pimenta, Mayra Mercedes Zegarra |
Contributors | Rodrigues, Francisco Aparecido |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0181 seconds